Soft nanocomposites represent both a theoretical and an experimental challenge due to the high number of the microscopic constituents that strongly influence the behaviour of the systems. An effective theoretical description of such systems invokes a reduction of the degrees of freedom to be analysed, hence requiring the introduction of an efficient, quantitative, coarse-grained description. We here report on a novel coarse graining approach based on a set of transferable potentials that quantitatively reproduces properties of mixtures of linear and star-shaped homopolymeric nanocomposites. By renormalizing groups of monomers into a single effective potential between a f-functional star polymer and an homopolymer of length N, and through a scaling argument, it will be shown how a substantial reduction of the to degrees of freedom allows for a full quantitative description of the system. Our methodology is tested upon full monomer simulations for systems of different molecular weight, proving its full predictive potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4965957 | DOI Listing |
Sci Rep
December 2024
School of Computer and Artificial Intelligence, Beijing Technology and Business University, Beijing, 100048, China.
To achieve high-performance trajectory tracking for a manipulator, this study proposes a novel sliding mode control strategy incorporating a nonlinear disturbance observer. The observer is designed to estimate unknown models in real-time, enabling feedforward compensation for various uncertainties such as modeling errors, joint friction, and external torque disturbances. The control law is formulated by integrating the Backstepping method, Lyapunov theory, and global fast terminal sliding mode theory, ensuring global convergence to zero within finite time and enhancing system robustness.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China.
Returning raw straw to the soil can significantly elevate soil methylmercury (MeHg) and crop mercury (Hg) levels, underscoring the need to investigate safer approaches to straw utilization in mercury-contaminated regions. In this study, rice straw underwent anaerobic fermentation with the addition of sulfate, and the resulting fermentation products were utilized in a pot experiment involving water spinach to assess the impact of anaerobically fermented straw return on soil Hg methylation and its bioaccumulation. Findings revealed that the addition of sulfate during straw fermentation markedly increased the fermentation degree of the products, and sulfate was converted into organic sulfur-containing ligands that can functionalize the fermentation residuals.
View Article and Find Full Text PDFTomography
December 2024
Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara 252-0374, Japan.
Objectives: We evaluated the noise reduction effects of deep learning reconstruction (DLR) and hybrid iterative reconstruction (HIR) in brain computed tomography (CT).
Methods: CT images of a 16 cm dosimetry phantom, a head phantom, and the brains of 11 patients were reconstructed using filtered backprojection (FBP) and various levels of DLR and HIR. The slice thickness was 5, 2.
Gels
December 2024
National Nanotechnology Centre, National Science and Technology Development Agency, Pathumthani 12120, Thailand.
Chronic wounds represent a persistent clinical challenge due to prolonged inflammation and impaired tissue repair mechanisms. Cannabidiol (CBD), recognized for its anti-inflammatory and pro-healing properties, shows therapeutic promise in wound care. However, its delivery via lipid nanoparticles (LNPs) remains challenging due to CBD's inherent instability and low bioavailability.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
Introduction: Toxoplasmosis is caused by the opportunistic, cosmopolitan protozoan is one of the most common parasitoses in the world. This parasite can pose a threat to people with immunodeficiency but also to the fetus, since the invasion can lead to miscarriages. Moreover, this parasite can contribute to economic losses in livestock farming.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!