Lifetimes of partially resolved ro-vibrational levels of the Na 2Σ double well state have been measured for the first time. Ground state sodium dimer molecules in a molecular beam are resonantly excited by the doubled output of a 10 ns pulsed dye laser in the range 333-357 nm. After being allowed to decay for a predetermined time interval, the surviving excited molecules are ionized by 532 nm photons from a delayed Nd:YAG laser and detected in a linear time-of-flight mass spectrometer. By appropriate tuning of the excitation laser and systematic variation of the probe laser delay, lifetimes are obtained for vibrational levels in the range from 22 to 57. At zero rotation, the three lowest vibrational quantum numbers that we have explored (22, 25, and 28) correspond to wavefunctions whose probability densities are appreciable only in the inner well. Levels with larger quantum numbers are located above the barrier, which, for the rotation-free case, lies between quantum numbers 33 and 34. Because of the congested nature of the excitation spectrum and the experimental resolution of about 0.2 cm available to us, our experimental results are only partially quantum state resolved. Nevertheless, we can discern a decrease in lifetime from about 50 to 40 ns for the inner well levels and a slight increase in lifetime with increasing quantum number for levels above the potential barrier. We have also performed lifetime calculations based on the LEVEL and BCONT programs made available by Le Roy, the latter of which was modified by McGeehan. When limited to bound-bound transitions, theoretical lifetimes for levels above the barrier are systematically larger than experimental values by a factor of almost two. With the addition of bound-free transitions, agreement between experiment and theory is, for the most part, within the experimental uncertainties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4966579 | DOI Listing |
J Phys Chem B
January 2025
Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.
Conventional methods for extracting rare earth metals (REMs) from mined mineral ores are inefficient, expensive, and environmentally damaging. Recent discovery of lanmodulin (LanM), a protein that coordinates REMs with high-affinity and selectivity over competing ions, provides inspiration for new REM refinement methods. Here, we used quantum mechanical (QM) methods to investigate trivalent lanthanide cation (Ln) interactions with coordination systems representing bulk solvent water and protein binding sites.
View Article and Find Full Text PDFJ Am Coll Cardiol
December 2024
Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts, USA. Electronic address:
Background: Outpatient worsening heart failure (HF), defined by initiation or intensification of diuretics, is adversely prognostic for patients with either reduced or preserved ejection fraction.
Objectives: This study sought to investigate the prognostic value of outpatient worsening HF in transthyretin amyloidosis with cardiomyopathy and the effect of patisiran treatment.
Methods: Post hoc analyses of the APOLLO-B trial (NCT03997383) evaluated the associations between outpatient worsening HF (defined by oral diuretic initiation or intensification), measures of disease progression, and a composite endpoint of all-cause mortality and cardiovascular (CV) events.
Nature
January 2025
Xanadu Quantum Technologies Inc., Toronto, Ontario, Canada.
Photonics offers a promising platform for quantum computing, owing to the availability of chip integration for mass-manufacturable modules, fibre optics for networking and room-temperature operation of most components. However, experimental demonstrations are needed of complete integrated systems comprising all basic functionalities for universal and fault-tolerant operation. Here we construct a (sub-performant) scale model of a quantum computer using 35 photonic chips to demonstrate its functionality and feasibility.
View Article and Find Full Text PDFNature
January 2025
Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia, Canada.
In a dilute two-dimensional electron gas, Coulomb interactions can stabilize the formation of a Wigner crystal. Although Wigner crystals are topologically trivial, it has been predicted that electrons in a partially filled band can break continuous translational symmetry and time-reversal symmetry spontaneously, resulting in a type of topological electron crystal known as an anomalous Hall crystal. Here we report signatures of a generalized version of the anomalous Hall crystal in twisted bilayer-trilayer graphene, whose formation is driven by the moiré potential.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China.
The chiral edge current is the boundary manifestation of the Chern number of a quantum anomalous Hall (QAH) insulator. The van der Waals antiferromagnet MnBiTe is theorized to be a QAH in odd-layers but has shown Hall resistivity below the quantization value at zero magnetic field. Here, we perform scanning superconducting quantum interference device (sSQUID) microscopy on these seemingly failed QAH insulators to image their current distribution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!