Objective: We sought to understand the alteration in the anisotropic, or direction dependent, character of muscle as measured by electrical impedance myography (EIM) in subjects with Duchenne muscular dystrophy (DMD) and its potential to serve as a biomarker of disease status.

Methods: Thirty-six boys with DMD and 27 healthy controls were measured with EIM, with electrical current applied both parallel and perpendicular to the major muscle fiber direction. In addition, muscle extracted from 10 mdx and 10 wild-type mice were measured analogously.

Results: Normalized reactance anisotropy, a direction-dependent measure of membrane charge storage capability, was significantly lower in the four muscles of DMD subjects as compared to controls (p<0.01). Normalized reactance anisotropy also decreased with increasing age in DMD subjects (r=-0.36, p=0.031), but not in healthy boys. Analogous changes were observed in mdx mouse gastrocnemius as compared to wild type (p=0.019).

Conclusion: These results support that loss of electrical anisotropy is a previously unrecognized feature of dystrophic muscle.

Significance: Anisotropic alterations may offer novel indices to assist in neuromuscular disease diagnosis and to serve as easy-to-obtain biomarkers in clinical therapeutic trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5181855PMC
http://dx.doi.org/10.1016/j.clinph.2016.09.017DOI Listing

Publication Analysis

Top Keywords

loss electrical
4
electrical anisotropy
4
anisotropy unrecognized
4
unrecognized feature
4
feature dystrophic
4
muscle
4
dystrophic muscle
4
muscle serve
4
serve convenient
4
convenient disease
4

Similar Publications

Alzheimer's disease (AD) is a central nervous system degenerative disease with a stealthy onset and a progressive course characterized by memory loss, cognitive dysfunction, and abnormal psychological and behavioral symptoms. However, the pathogenesis of AD remains elusive. An increasing number of studies have shown that oligodendrocyte progenitor cells (OPCs) and oligodendroglial lineage cells (OLGs), especially OPCs and mature oligodendrocytes (OLGs), which are derived from OPCs, play important roles in the pathogenesis of AD.

View Article and Find Full Text PDF

Objectives: This study examined the relationships between electrophysiological measures of the electrically evoked auditory brainstem response (EABR) with speech perception measured in quiet after cochlear implantation (CI) to identify the ability of EABR to predict postoperative CI outcomes.

Methods: Thirty-four patients with congenital prelingual hearing loss, implanted with the same manufacturer's CI, were recruited. In each participant, the EABR was evoked at apical, middle, and basal electrode locations.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Alzheimer's Center at Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.

Background: Neurofibrillary tangles formed by hyperphosphorylated tau aggregates in the brain are one of the classical hallmarks of Alzheimer's Disease (AD). Tau aggregates have been shown to elicit cytotoxicity, leading to overall neuronal loss and cognitive decline in AD. These aggregates can be transmitted from neurons and glial cells to other brain cells through a process known as tau spreading, and ultimately reach the endothelial cells (ECs) lining the vessel walls, thus, causing dysfunction of the neurovascular unit (NVU), a complex multicellular system surrounding brain vessels.

View Article and Find Full Text PDF

Background: Midfacial aging involves skeletal changes, muscle weakening, and fat redistribution, resulting in volume loss, skin sagging, and deepened nasolabial folds. High-Intensity Facial Electrical Stimulation (HIFES) combined with Radiofrequency (RF) is a novel non-invasive method to address these changes by enhancing muscle mass and remodeling subcutaneous tissue.

Objectives: To assess the efficacy of HIFES and Synchronized RF in improving midfacial aesthetics, specifically muscle thickness, skin displacement, and facial volume.

View Article and Find Full Text PDF

Introduction: Pests are important factors affecting the growth of cotton, and it is a challenge to accurately detect cotton pests under complex natural conditions, such as low-light environments. This paper proposes a low-light environments cotton pest detection method, DCP-YOLOv7x, based on YOLOv7x, to address the issues of degraded image quality, difficult feature extraction, and low detection precision of cotton pests in low-light environments.

Methods: The DCP-YOLOv7x method first enhances low-quality cotton pest images using FFDNet (Fast and Flexible Denoising Convolutional Neural Network) and the EnlightenGAN low-light image enhancement network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!