Antioxidant Treatment Improves Cardiac Dysfunction in a Murine Model of Premature Aging.

J Cardiovasc Pharmacol

*Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; †Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria; ‡Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; §Department of Internal Medicine, Service of Cardiology, University Hospitals Leuven, Leuven, Belgium.

Published: November 2016

Bmal1-(brain and muscle ARNT-like protein-1) deficient (Bmal1) mice prematurely age because of an increased reactive oxygen species (ROS) production. These mice also show a decline in cardiac function with age. We investigated whether an antioxidant treatment can ameliorate the declining cardiac function in prematurely aged Bmal1 mice. Male Bmal1 and wild-type (Bmal1) mice were exposed for 15 weeks to a high fat and high cholesterol diet with or without the antioxidant 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPOL; 5 mmol/L; in drinking water during the last 10 weeks). Echocardiographic analysis revealed that TEMPOL treatment of Bmal1 mice normalized cardiac function, as evidenced by a decrease in left ventricular diastolic and systolic internal diameters, and by an increase in fractional shortening and ejection fraction. The antioxidant did not affect cardiac function in Bmal1 mice. Although TEMPOL did not influence cardiac ROS levels in Bmal1 mice, it significantly protected Bmal1 cardiac telomeres from oxidation, as evidenced by a reduction in the telomere damage score (0.11 ± 0.012% vs. 0.16 ± 0.015%; P = 0.028). Thus, antioxidant treatment normalized cardiac function of Bmal1 mice, probably in part by scavenging ROS.

Download full-text PDF

Source
http://dx.doi.org/10.1097/FJC.0000000000000423DOI Listing

Publication Analysis

Top Keywords

bmal1 mice
28
cardiac function
20
antioxidant treatment
12
bmal1
9
cardiac
8
mice
8
normalized cardiac
8
function bmal1
8
antioxidant
5
function
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!