The aim of this study is preparation of dendrimer encapsulated ytterbium-175 radio-nanoparticles and investigation of the compound chemical characteristic before and after the neutron irradiation and also study the in vivo biodistribution for targeted radiopharmaceutical dose delivery to solid tumors. For preparation of dendrimer-metal nanocomposite, a dendrimer compound containing an average of 55 Yb ions per dendrimer was prepared. The synthesized encapsulated ytterbium irradiated by neutron for 2 h at 3×10 n.cm [Formula: see text] neutron flux. The resulting mixture was injected into 2 separate groups of tumor bearing mice. One group were injected intravenously and the other group were injected directly in tumor and were excised, weighed and counted at certain times to study the biodistribution and to compare the tumor treatment and the leakage of the radiopharmaceutical to non-target organs. The formation of dendrimer-Ybcomplex was confirmed by UV-vis spectrometer. High-resolution transmission electron microscopy (HRTEM) and Dynamic Light Scattering (DLS) results showed a particle size of less than 10 nm. The specific activity and radio-ytterbium purity of the irradiated nano-composite were as follows: 7 MBq/mg and >95%. The measured radiochemical purity by Instant Thin Layer Chromatography (ITLC) was more than 99%. In intravenous injection the complex showed rapid up take in liver, spleen, and lung, while accumulation in other organs was insignificant. In tumor direct injection the average size of the tumor mass in mice was reduced by 30%.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNB.2016.2587906DOI Listing

Publication Analysis

Top Keywords

dendrimer encapsulated
8
tumor bearing
8
bearing mice
8
group injected
8
tumor
6
development dendrimer
4
encapsulated radio-ytterbium
4
radio-ytterbium biodistributionin
4
biodistributionin tumor
4
mice aim
4

Similar Publications

Advances in Dendritic Systems and Dendronized Nanoparticles: Paradigm Shifts in Cancer Targeted Therapy and Diagnostics.

Mol Pharm

December 2024

School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Deemed to be University, Shirpur, Dhule, Maharashtra 425405, India.

Cancer has emerged as a global health crisis, claiming millions of lives annually. Dendrimers and dendronized nanoparticles, a novel class of nanoscale molecules with highly branched three-dimensional macromolecular structures, have gained significant attention in cancer treatment and diagnosis due to their unique properties. These dendritic macromolecules offer a precisely controlled branching architecture, enabling functionalization with specific targeting molecules to enhance the selective delivery of therapeutic agents to tumor cells while minimizing systemic toxicity.

View Article and Find Full Text PDF

Phytochemicals as dietary components are being extensively explored in order to prevent and treat a wide range of diseases. Apigenin is among the most studied flavonoids found in significant amount in fruits (oranges), vegetables (celery, parsley, onions), plant-based beverages (beer, tea, wine) and herbs (thyme, chamomile, basil, oregano) that has recently gained interest due to its promising pharmacological effects. However, the poor solubility and extended first pass metabolism of apigenin limits its clinical use.

View Article and Find Full Text PDF

The present study aimed to synthesize tiotropium bromide (TIO)-loaded generation 5 polyamidoamine dendrimers (TIO-PAMAM-G5-DMs) using a solvent-free microwave assisted synthesis (MAS) for the treatment of pulmonary acidosis, a condition associated with decreased blood pH due to bronchoconstriction. The encapsulation of TIO into PAMAM-G5-DMs was achieved using MAS Michael addition and amidation reactions, following green chemistry principles. The DMs demonstrated particle size of 460.

View Article and Find Full Text PDF
Article Synopsis
  • Poly(amidoamine) (PAMAM) dendrimers are gaining popularity in research for their ability to effectively deliver medicinal compounds by conjugating with functional molecules and encapsulating small molecules.
  • This study focuses on the antioxidant gallic acid, exploring whether its encapsulation in PAMAM dendrimers (generations 4 and 5) can enhance its ability to combat oxidative stress linked to age-related macular degeneration (AMD).
  • Findings show that these PAMAM dendrimers have significant antioxidant activities and can help reduce harmful reactive oxygen species in retinal cells, potentially slowing AMD progression and improving cell viability.
View Article and Find Full Text PDF

Prospects of nano-theranostic approaches against breast and cervical cancer.

Biochim Biophys Acta Rev Cancer

November 2024

Department of Clinical and Translational Research, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata 700 026, India. Electronic address:

The bottleneck on therapeutics and diagnostics is removed by an alternate approach known as theranostics which combines both therapeutics and diagnostics within a single platform. Due to this "all in one" nature of theranostics, it is now extensively applied in the medicinal field mainly in cancer treatment over the conventional therapy. Recently, FDA approval of lutetium 177 (177Lu) DOTATATE and 177Lu-PSMA-based radionuclide theranostics are clinically used and very few theranostics specific to breast cancer are in clinical trials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!