A boundary element model provides great flexibility for the simulation of membrane-type micromachined ultrasonic transducers (MUTs) in terms of membrane shape, actuating mechanism, and array layout. Acoustic crosstalk is accounted for through a mutual impedance matrix that captures the primary crosstalk mechanism of dispersive-guided modes generated at the fluid-solid interface. However, finding the solution to the fully populated boundary element matrix equation using standard techniques requires computation time and memory usage that scales by the cube and by the square of the number of nodes, respectively, limiting simulation to a small number of membranes. We implement a solver with improved speed and efficiency through the application of a multilevel fast multipole algorithm (FMA). By approximating the fields of collections of nodes using multipole expansions of the free-space Green's function, an FMA solver can enable the simulation of hundreds of thousands of nodes while incurring an approximation error that is controllable. Convergence is drastically improved using a problem-specific block-diagonal preconditioner. We demonstrate the solver's capabilities by simulating a 32-element 7-MHz 1-D capacitive MUT (CMUT) phased array with 2880 membranes. The array is simulated using 233280 nodes for a very wide frequency band up to 50 MHz. For a simulation with 15210 nodes, the FMA solver performed ten times faster and used 32 times less memory than a standard solver based on LU decomposition. We investigate the effects of mesh density and phasing on the predicted array response and find that it is necessary to use about seven nodes over the width of the membrane to observe convergence of the solution-even below the first membrane resonance frequency-due to the influence of higher order membrane modes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5111814PMC
http://dx.doi.org/10.1109/TUFFC.2016.2591920DOI Listing

Publication Analysis

Top Keywords

multilevel fast
8
fast multipole
8
multipole algorithm
8
boundary element
8
fma solver
8
nodes
6
simulation
5
efficient broadband
4
broadband simulation
4
simulation fluid-structure
4

Similar Publications

Substance use disorder (SUD) is increasing among primary Spanish-speaking populations, and treatment use is disproportionately low. Patient-provider Spanish language concordance is associated with SUD treatment initiation and better outcomes. Recent geographic shifts within primary Spanish-speaking populations are important considerations in identifying gaps in SUD service delivery in Spanish.

View Article and Find Full Text PDF

In the field of UAV aerial image processing, ensuring accurate detection of tiny targets is essential. Current UAV aerial image target detection algorithms face challenges such as low computational demands, high accuracy, and fast detection speeds. To address these issues, we propose an improved, lightweight algorithm: LCFF-Net.

View Article and Find Full Text PDF

Background: The food environment plays a crucial role in shaping our dietary choices and overall health. Spatial measures provide distinct perspectives on the physical food environment and its impact on diet. While proportion measures are theoretically considered to provide a more accurate representation of the overall physical food environment than density measures, it is important to recognize that the association between food environments and diet can vary depending on the context.

View Article and Find Full Text PDF

Operando Observation of Electrically Triggered Phase Transition in Thin CuS Crystal.

Nano Lett

December 2024

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.

CuS has been identified as a functional material of memristors with multilevel resistance switching. However, as the migration of Cu ions under the electric field is tangled with defect evolution and phase transition, the electroresistance mechanism of CuS remains largely unclear. Here, the electrically triggered phase transition was studied by transmission electron microscopy.

View Article and Find Full Text PDF

Formaldehyde, a hazardous gas that is exposed to everyone every day, has been proven to pose an elevated risk of respiratory problems, allergies, and chronic diseases. Adsorption technologies have proven to be a straightforward and labor-saving method to reduce indoor formaldehyde levels. Currently, extensive research has been conducted utilizing Deep Eutectic Solvents (DES) as adsorbents for harmful gases, yet the adsorption and conversion mechanisms for formaldehyde remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!