AI Article Synopsis

  • Localisation of proteins in eukaryotes is crucial for their function, as they need to be in specific compartments to interact with relevant proteins.
  • COLA is a new proteomics and bioinformatics approach designed to identify protein-protein co-localisations on a large scale, indicating potential functional relationships.
  • This method enables quick and precise mapping of how protein interactions change under different conditions or treatments.

Article Abstract

Localisation and protein function are intimately linked in eukaryotes, as proteins are localised to specific compartments where they come into proximity of other functionally relevant proteins. Significant co-localisation of two proteins can therefore be indicative of their functional association. We here present COLA, a proteomics based strategy coupled with a bioinformatics framework to detect protein-protein co-localisations on a global scale. COLA reveals functional interactions by matching proteins with significant similarity in their subcellular localisation signatures. The rapid nature of COLA allows mapping of interactome dynamics across different conditions or treatments with high precision.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5315029PMC
http://dx.doi.org/10.1039/c6mb00701eDOI Listing

Publication Analysis

Top Keywords

interactome dynamics
8
proteomics profiling
4
profiling interactome
4
dynamics colocalisation
4
colocalisation analysis
4
cola
4
analysis cola
4
cola localisation
4
localisation protein
4
protein function
4

Similar Publications

The protein interactome of p65/RELA, the most active subunit of the transcription factor (TF) NF-κB, has not been previously determined in living cells. Using p65-miniTurbo fusion proteins and biotin tagging, we identify >350 RELA interactors from untreated and IL-1α-stimulated cells, including many TFs (47% of all interactors) and >50 epigenetic regulators belonging to different classes of chromatin remodeling complexes. A comparison with the interactomes of two point mutants of p65 reveals that the interactions primarily require intact dimerization rather than DNA-binding properties.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

UNC Chapel Hill, Chapel Hill, NC, USA.

Background: In the last decade, we have demonstrated that the brain-enriched E3 ubiquitin ligase TRIM9 regulates cytoskeletal dynamics, membrane remodeling, and netrin-dependent signaling pathways in all stages of neuron development, including the maturation of dendritic spines and electrophysiological activity. Moreover, TRIM9 protein levels increase in the adult brain and are maintained throughout adulthood. In the adult mouse TRIM9 is enriched within the postsynaptic density (PSD), a proteinaceous rich region in the post synapse, containing neurotransmitter receptors, scaffolding proteins, and cytoskeletal elements.

View Article and Find Full Text PDF

Interactions among proteins are fundamental in driving functions and activities that regulate cell biology, mechanotransduction, and cell-to-cell communication/recognition. Recently, cross-linking mass spectrometry (XL-MS) has emerged as a powerful tool for interaction discovery and characterization, driving the enlightenment of novel binding partners otherwise undetected. Covalent linkages of two amino acid residues of proteins (or within complexes) in close proximity can be identified by MS, thus providing structural insights such as distance restraints or unraveling interaction dynamics.

View Article and Find Full Text PDF

While the cohesin complex is a key player in genome architecture, how it localizes to specific chromatin sites is not understood. Recently, we and others have proposed that direct interactions with transcription factors lead to the localization of the cohesin-loader complex (NIPBL/MAU2) within enhancers. Here, we identify two clusters of LxxLL motifs within the NIPBL sequence that regulate NIPBL dynamics, interactome, and NIPBL-dependent transcriptional programs.

View Article and Find Full Text PDF

Quantitative redox proteomics links thioredoxin to heavy ion resistance in Deinococcus radiodurans.

Free Radic Biol Med

December 2024

State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China; School of Basic Medicine, Anhui Medical University, Hefei 230032, China; Department of Biomedicine, Medical College, Guizhou University, Guiyang, 550025, China; Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Second Clinical Medicine Collage, Guangzhou Higher Education Mega Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Hengyang Medical School, University of South China, Hengyang 421001, China. Electronic address:

Heavy ion radiotherapy is an effective treatment for tumors, but its therapeutic efficacy is limited in cancer cells with radiation resistance. Deinococcus radiodurans, well known for its extremely resisting various stresses, was used to explore radioresistant mechanism. We used quantitative redox proteomics to track the dynamic changes in the global redox state after C irradiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!