Evidence of a metabolic reserve in the skeletal muscle of elderly people.

Aging (Albany NY)

Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT 84112, USA.

Published: November 2016

The purpose of the present study was to determine whether mitochondrial function is limited by O availability or the intrinsic capacity of mitochondria to synthesize ATP in elderly individuals. To this aim, we examined, in comparison to free-flow conditions (FF), the effect of superimposing reactive hyperemia (RH), induced by a period of brief ischemia during the last min of exercise, on O availability and mitochondrial function in the calf muscle. 12 healthy, untrained, elderly subjects performed dynamic plantar flexion exercise and phosphorus magnetic resonance spectroscopy (P-MRS), near-infrared spectroscopy (NIRS), and Doppler ultrasound were used to assess muscle metabolism and peripheral hemodynamics. Limb blood flow [area under the curve (AUC), FF: 1.5±0.5L; RH: 3.2±1.1L, P<0.01] and convective O delivery (AUC, FF: 0.30±0.13L; RH: 0.64±0.29L, P<0.01) were significantly increased in RH in comparison to FF. RH was also associated with significantly higher capillary blood flow (P<0.05) and this resulted in a 33% increase in estimated peak mitochondrial ATP synthesis rate (FF: 24±11 mM.min; RH: 31±7 mM.min, P<0.05). These results document a hemodynamic reserve in the contracting calf muscle of the elderly accessible by superimposing reactive hyperemia. Furthermore, this increase in O availability enhanced mitochondrial function thus indicating a skeletal muscle metabolic reserve despite advancing age and low level of physical activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5310656PMC
http://dx.doi.org/10.18632/aging.101079DOI Listing

Publication Analysis

Top Keywords

mitochondrial function
8
evidence metabolic
4
metabolic reserve
4
reserve skeletal
4
skeletal muscle
4
muscle elderly
4
elderly people
4
people purpose
4
purpose study
4
study determine
4

Similar Publications

Glucose Transporter 1 Deficiency Impairs Glucose Metabolism and Barrier Induction in Human Induced Pluripotent Stem Cell-Derived Astrocytes.

J Cell Physiol

January 2025

Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.

Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.

View Article and Find Full Text PDF

Validation of a Coarse-Grained Martini 3 Model for Molecular Oxygen.

J Chem Theory Comput

January 2025

IBiTech - BioMMedA Group, Ghent University, Corneel Heymanslaan 10, Entrance 98, 9000 Gent, Belgium.

Molecular oxygen (O) is essential for life, and continuous effort has been made to understand its pathways in cellular respiration with all-atom (AA) molecular dynamics (MD) simulations of, e.g., membrane permeation or binding to proteins.

View Article and Find Full Text PDF

Biomimetic Extracellular Vesicles Containing Biominerals for Targeted Osteoporosis Therapy.

ACS Appl Mater Interfaces

January 2025

Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China.

Osteoporosis (OP) is a systemic skeletal disorder characterized by decreased bone mineral density and a heightened risk of fractures. Therapies for OP have primarily focused on balancing bone formation and bone resorption, but enhancing the remineralization of osteoporotic bone is also a key strategy for effective repair. Recent insights into biomineralization mechanisms have highlighted the essential role of mineral-containing extracellular vesicles (EVs) secreted by osteoblasts in promoting bone marrow mesenchymal stromal/stem cell (BMSC) differentiation and initiating matrix mineralization.

View Article and Find Full Text PDF

Discovery of a novel exceptionally potent and orally active Nur77 ligand NB1 with a distinct binding mode for cancer therapy.

Acta Pharm Sin B

December 2024

State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Science, Xiamen University, Xiamen 361102, China.

The orphan nuclear receptor Nur77 is emerging as an attractive target for cancer therapy, and activating Nur77's non-genotypic anticancer function has demonstrated strong therapeutic potential. However, few Nur77 site B ligands have been identified as excellent anticancer compounds. There are no co-crystal structures of effective anticancer agents at Nur77 site B, which greatly limits the development of novel Nur77 site B ligands.

View Article and Find Full Text PDF

Leber's hereditary optic neuropathy (LHON) is an ocular mitochondrial disease that involves the impairment of mitochondrial complex I, which is an important contributor to blindness among young adults across the globe. However, the disorder has no available cures, since the approved drug idebenone for LHON in Europe relies on bypassing complex I defects rather than fixing them. Herein, mRNA-loaded nanoparticle (mNP)-engineered mitochondria (mNP-Mito) were designed to replace dysfunctional mitochondria with the delivery of exogenous mitochondria, normalizing the function of complex I for treating LHON.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!