Many mathematical models have been published with the purpose of explaining aspects of T-cell development in the thymus. In this manuscript we adapted a four-compartment model of the thymus and used a range of mathematical approaches with the aim of explaining the dynamics of the four main thymocyte populations in the mouse thymus, from the emergence of the first fetal thymocyte until the death of the animal. At various pre-natal and post-natal stages we investigated experimentally the number and composition of thymocytes populations, their apoptosis and proliferation, along with data from literature, to create and validate the model. In our model the proliferation processes are characterized by decreasing proliferation rates, which allows us to model the natural involution of the thymus. The best results were obtained when different sets of parameters were used for the fetal and post-natal periods, suggesting that birth may induce a discontinuity in the modeled processes. Our model is able to model the development of both pre-natal and post-natal thymocyte populations. Also, our findings showed that the post-natal thymus is able to develop in the absence of the daily input of bone marrow progenitors, providing more evidence to support the autonomous development of the post-natal thymus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5099910PMC
http://dx.doi.org/10.1038/srep36159DOI Listing

Publication Analysis

Top Keywords

development post-natal
8
mouse thymus
8
bone marrow
8
marrow progenitors
8
thymocyte populations
8
pre-natal post-natal
8
model model
8
post-natal thymus
8
thymus
7
post-natal
6

Similar Publications

Identification of a vimentin-expressing α-cell phenotype in CF and normal pancreas.

J Endocrinol

January 2025

J Shaw, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom of Great Britain and Northern Ireland.

Endocrine dysfunction and diabetes can develop secondary to fibrotic diseases within the pancreas including cystic fibrosis (CF). Phenotypic shift within epithelial cells has been recognised in association with pro-fibrotic signalling. We sought evidence of endocrine cell epithelial-to-mesenchymal transition in CF and non-CF pancreas.

View Article and Find Full Text PDF

Head and Neck Paraganglioma in Pacak-Zhuang Syndrome.

JNCI Cancer Spectr

January 2025

Section on Medical Neuroendocrinology National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892, MD, USA.

Head and neck paragangliomas (HNPGLs) are typically slow-growing, hormonally inactive tumors of parasympathetic paraganglia. Inactivation of prolyl-hydroxylase domain-containing 2 protein causing indirect gain-of-function of hypoxia-inducible factor-2α (HIF-2α), encoded by EPAS1, was recently shown to cause carotid body hyperplasia. We previously described a syndrome with multiple sympathetic paragangliomas caused by direct gain-of-function variants in EPAS1 (Pacak-Zhuang syndrome, PZS) and developed a corresponding mouse model.

View Article and Find Full Text PDF

Early environmental influences on the orbito-frontal cortex function and its effects on behavior.

Neurosci Biobehav Rev

January 2025

Douglas Research Centre, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, QC, Canada. Electronic address:

Early-life adversity during pre- and early post-natal phases can impact brain development and lead to maladaptive changes in executive function related behaviors. This increases the risk for a range of psychopathologies and physical diseases. Importantly, exposure to adversities during these periods is also linked to alterations in the orbito-frontal cortex (OFC) which is a key player in these executive functions.

View Article and Find Full Text PDF

The dataset presented in this data paper supports "The prenatal assimilation of minerals and metals in the nestlings of a small passerine bird" (Orłowski et al. 2024) [1]. The article includes raw data on dead nestlings of a small passerine bird, the Eurasian Reed Warbler breeding in an extensive reedbed (with dominating plant species, the Common Reed located in an intensively fertilized fishpond habitat, the Stawy Milickie [Milicz Ponds] Nature Reserve (SW Poland).

View Article and Find Full Text PDF

The rat offers a uniquely valuable animal model in neuroscience, but we currently lack an individual-level understanding of the in vivo rat brain network. Here, leveraging longitudinal measures of cortical magnetization transfer ratio (MTR) from in vivo neuroimaging between postnatal days 20 (weanling) and 290 (mid-adulthood), we design and implement a computational pipeline that captures the network of structural similarity (MIND, morphometric inverse divergence) between each of 53 distinct cortical areas. We first characterized the normative development of the network in a cohort of rats undergoing typical development (N=47), and then contrasted these findings with a cohort exposed to early life stress (ELS, N=40).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!