The brain processes information through multiple layers of neurons. This deep architecture is representationally powerful, but complicates learning because it is difficult to identify the responsible neurons when a mistake is made. In machine learning, the backpropagation algorithm assigns blame by multiplying error signals with all the synaptic weights on each neuron's axon and further downstream. However, this involves a precise, symmetric backward connectivity pattern, which is thought to be impossible in the brain. Here we demonstrate that this strong architectural constraint is not required for effective error propagation. We present a surprisingly simple mechanism that assigns blame by multiplying errors by even random synaptic weights. This mechanism can transmit teaching signals across multiple layers of neurons and performs as effectively as backpropagation on a variety of tasks. Our results help reopen questions about how the brain could use error signals and dispel long-held assumptions about algorithmic constraints on learning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5105169PMC
http://dx.doi.org/10.1038/ncomms13276DOI Listing

Publication Analysis

Top Keywords

random synaptic
8
multiple layers
8
layers neurons
8
assigns blame
8
blame multiplying
8
error signals
8
synaptic weights
8
synaptic feedback
4
feedback weights
4
weights support
4

Similar Publications

Background: Neuronal surface antibody-associated autoimmune encephalitis (NSAE) is a group of neuro-inflammatory disorders that is mediated by autoantibodies against the cell-surface and synaptic antigens. Studies have explored the role of neurofilament light chain (NfL) in NSAE and provided inconsistent data. We performed a systematic review and meta-analysis to evaluate the NfL levels in the serum and cerebrospinal fluid (CSF) of patients with NSAE.

View Article and Find Full Text PDF

Co-active or temporally ordered neural ensembles are a signature of salient sensory, motor, and cognitive events. Local convergence of such patterned activity as synaptic clusters on dendrites could help single neurons harness the potential of dendritic nonlinearities to decode neural activity patterns. We combined theory and simulations to assess the likelihood of whether projections from neural ensembles could converge onto synaptic clusters even in networks with random connectivity.

View Article and Find Full Text PDF

A global overview of shared genetic architecture between smoking behaviors and major depressive disorder in European and East Asian ancestry.

J Affect Disord

January 2025

Department of Environmental Genomics, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China. Electronic address:

Background: The co-occurrence of smoking behaviors and major depressive disorder (MDD) has been widely documented in populations. However, the underlying mechanism of this association remains unclear.

Methods: Genome-wide association studies of smoking behaviors and MDD, combined with multi-omics datasets, were usedto characterise genetic correlations, identify shared loci and genes, and explore underlying biological mechanisms.

View Article and Find Full Text PDF

The developing brain undergoes a remarkable process of synapse production and maturation, particularly in glutamatergic synapses. In this study, we focused on the locus coeruleus (LC) nucleus, a brain region crucial for cognitive functions, to investigate the developmental changes in glutamatergic synaptic connections. Using the whole-cell patch clamp method, we recorded evoked excitatory postsynaptic currents (eEPSCs) from LC neurons in rats at ages 7, 14, and 21 days.

View Article and Find Full Text PDF

The objective of this study was to evaluate the effect of seletracetam (SEL), a potent modulator of synaptic vesicle glycoprotein 2A (SV2A), in patients with photoparoxysmal EEG response (PPR) to intermittent photic stimulation (IPS) as proof-of-principle of efficacy in patients with epilepsy. In this multicenter, single-blind Phase II study, adults with photosensitive epilepsy, with/without concomitant antiseizure medication therapy, underwent IPS under 3 eye conditions (at eye closure, eyes closed and eyes open) after a single oral dose of placebo (day - 1) or SEL (day 1; 0.5, 1, 2, 4, 10, or 20 mg).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!