A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Gene-based neonatal immune priming potentiates a mucosal adenoviral vaccine encoding mycobacterial Ag85B. | LitMetric

Gene-based neonatal immune priming potentiates a mucosal adenoviral vaccine encoding mycobacterial Ag85B.

Vaccine

Department of Microbiology, Immunology & Parasitology, LSUHSC-New Orleans, LA 70112, USA; Internal Medicine, LSUHSC-New Orleans, LA 70112, USA; The Louisiana Vaccine Center, LSUHSC-New Orleans, LA 70112, USA. Electronic address:

Published: December 2016

AI Article Synopsis

  • Tuberculosis poses a significant health risk globally, especially for neonates and young infants who are more vulnerable to infection compared to adults.
  • The BCG vaccine, which is currently available, offers limited protection and is not safe for immunocompromised individuals, highlighting the need for a new vaccine that can be administered early in life and enhance future immunizations.
  • Research using gene-based vaccines expressing Ag85B from Mycobacterium tuberculosis shows potential for improving immune responses in neonates, with promising results from an initial DNA vaccine followed by an adenovirus booster, leading to better protection against tuberculosis challenges.

Article Abstract

Tuberculosis remains a major public health hazard worldwide, with neonates and young infants potentially more susceptible to infection than adults. BCG, the only vaccine currently available, provides some protection against tuberculous meningitis in children but variable efficacy in adults, and is not safe to use in immune compromised individuals. A safe and effective vaccine that could be given early in life, and that could also potentiate subsequent booster immunization, would represent a significant advance. To test this proposition, we have generated gene-based vaccine vectors expressing Ag85B from Mycobacterium tuberculosis (Mtb) and designed experiments to test their immunogenicity and protective efficacy particularly when given in heterologous prime-boost combination, with the initial DNA vaccine component given soon after birth. Intradermal delivery of DNA vaccines elicited Th1-based immune responses against Ag85B in neonatal mice but did not protect them from subsequent aerosol challenge with virulent Mtb H37Rv. Recombinant adenovirus vectors encoding Ag85B, given via the intranasal route at six weeks of age, generated moderate immune responses and were poorly protective. However, neonatal DNA priming following by mucosal boosting with recombinant adenovirus generated strong immune responses, as evidenced by strong Ag85B-specific CD4+ and CD8+ T cell responses, both in the lung-associated lymph nodes and the spleen, by the quality of these responding cells (assessed by their capacity to secrete multiple antimicrobial factors), and by improved protection, as indicated by reduced bacterial burden in the lungs following pulmonary TB challenge. These results suggest that neonatal immunization with gene-based vaccines may create a favorable immunological environment that potentiates the pulmonary mucosal boosting effects of a subsequent heterologous vector vaccine encoding the same antigen. Our data indicate that immunization early in life with mycobacterial antigens in an appropriate vaccine setting can prime for protective immunity against Mtb.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5131305PMC
http://dx.doi.org/10.1016/j.vaccine.2016.10.065DOI Listing

Publication Analysis

Top Keywords

immune responses
12
vaccine encoding
8
early life
8
recombinant adenovirus
8
mucosal boosting
8
vaccine
7
immune
5
gene-based neonatal
4
neonatal immune
4
immune priming
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!