Background: Nanocomposites (integrating the nano and composite technologies) for advanced fuel cells (NANOCOFC) demonstrate the great potential to reduce the operational temperature of solid oxide fuel cell (SOFC) significantly in the low temperature (LT) range 300-600ºC. NANOCOFC has offered the development of multi-functional materials composed of semiconductor and ionic materials to meet the requirements of low temperature solid oxide fuel cell (LTSOFC) and green energy conversion devices with their unique mechanisms.

Description: This work reviews the recent developments relevant to the devices and the patents in LTSOFCs from nanotechnology perspectives that reports advances including fabrication methods, material compositions, characterization techniques and cell performances.

Conclusion: Finally, the future scope of LTSOFC with nanotechnology and the practical applications are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.2174/187221051102170711145421DOI Listing

Publication Analysis

Top Keywords

green energy
8
energy conversion
8
conversion devices
8
temperature solid
8
solid oxide
8
oxide fuel
8
fuel cell
8
low temperature
8
nanotechnology based
4
based green
4

Similar Publications

Climate change and environmental degradation are critical global challenges, and the G-20 nations play a pivotal role in addressing these issues due to their substantial contributions to global GDP and carbon emissions. Transitioning toward renewable energy sources is imperative for mitigating CO2 emissions and achieving sustainable development. This study investigates the impact of technological innovation, gross domestic product (GDP), renewable energy consumption, economic freedom, and financial advancement on renewable energy use and environmental pollution levels in G-20 countries from 1995 to 2022.

View Article and Find Full Text PDF

Graphene quantum dots (GQDs) are highly valued for their chemical stability, tunable size, and biocompatibility. Utilizing green chemistry, a microwave-assisted synthesis method was employed to produce water-soluble GQDs from Mangifera Indica leaf extract. This approach is efficient, cost-effective, and environmentally friendly, offering reduced reaction times, energy consumption, and uniform particle sizes, and has proven advantageous over other methods.

View Article and Find Full Text PDF

This paper aims to construct a green environmental protection system by advancing database energy-saving techniques and optimizing the energy-saving mechanism against the backdrop of blockchain integration. The protocol classification of wireless sensor networks is examined within the context of the rapid growth of information technology. The analysis draws upon the database storage and sharing model and recent research examples that connect blockchain and database technology.

View Article and Find Full Text PDF

Undoped ruthenium oxide as a stable catalyst for the acidic oxygen evolution reaction.

Nat Commun

January 2025

WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia.

Reducing green hydrogen production cost is critical for its widespread application. Proton-exchange-membrane water electrolyzers are among the most promising technologies, and significant research has been focused on developing more active, durable, and cost-effective catalysts to replace expensive iridium in the anode. Ruthenium oxide is a leading alternative while its stability is inadequate.

View Article and Find Full Text PDF

Developing active-layer systems with both high performance and mechanical robustness is a crucial step towards achieving future commercialization of flexible and stretchable organic solar cells (OSCs). Herein, we design and synthesize a series of acceptors BTA-C6, BTA-E3, BTA-E6, and BTA-E9, featuring the side chains of hexyl, and 3, 6, and 9 carbon-chain with ethyl ester end groups respectively. Benefiting from suitable phase separation and vertical phase distribution, the PM6:BTA-E3-based OSCs processed by o-xylene exhibit lower energy loss and improved charge transport characteristic and achieve a power conversion efficiency of 19.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!