Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The influence of tip sonication duration on the spectral characteristics of carbon single-walled nanotubes (SWNTs) in aqueous suspension with single-stranded DNA (ssDNA) has been studied by NIR luminescence, NIR absorption, and Raman spectroscopy. It was revealed that prolongation of sonication leads to weakening of the SWNT polymer coverage and appearance of additional defects on the nanotube surface. Prolongation of the tip sonication treatment of SWNT/ssDNA from 30 to 90 min leads to the increase of the number of individual nanotubes in the aqueous suspension, but it significantly decreases the photoluminescence (PL) from semiconducting SWNTs because more defects are formed on the nanotube surface. At probing the SWNT/ssDNA emission with cysteine or dithiothreitol (DTT) doping the nanotube aqueous suspension showed the different PL intensity enhancement depending on the duration of the sonication treatment and on the ability of these reducing agents to passivate emission-quenching defects on the carbon nanotube sidewall. The magnitude of the PL enhancement rises with sonication prolongation and depends on the nanotube chirality. Tight and ordered polymer coverage of (6,4) nanotubes hampers the access of the reducing agent to emission-quenching defects on the nanotube surface and provides the weaker PL intensity increasing while (7,5) nanotubes show the strongest reaction to the doping effect. The comparison of cysteine and DTT ability to passivate the emission-quenching defects showed the higher efficiency of DTT doping. This prevailing is explained by the stronger reducing activity of DTT which is determined by a lower redox potential of this molecule.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5099295 | PMC |
http://dx.doi.org/10.1186/s11671-016-1708-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!