Purpose: To compare in vivo the total and regional pulmonary deposition of aerosol particles generated by a new system combining a vibrating-mesh nebulizer with a specific valved holding chamber and constant-output jet nebulizer connected to a corrugated tube.
Methods: Cross-over study comparing aerosol delivery to the lungs using two nebulizers in 6 healthy male subjects: a vibrating-mesh nebulizer combined with a valved holding chamber (Aerogen Ultra®, Aerogen Ltd., Galway, Ireland) and a jet nebulizer connected to a corrugated tube (Opti-Mist Plus Nebulizer®, ConvaTec, Bridgewater, NJ). Nebulizers were filled with diethylenetriaminepentaacetic acid labelled with technetium-99 m (Tc-DTPA, 2 mCi/4 mL). Pulmonary deposition of Tc-DTPA was measured by single-photon emission computed tomography combined with a low dose CT-scan (SPECT-CT).
Results: Pulmonary aerosol deposition from SPECT-CT analysis was six times increased with the vibrating-mesh nebulizer as compared to the jet nebulizer (34.1 ± 6.0% versus 5.2 ± 1.1%, p < 0.001). However, aerosol penetration expressed as the three-dimensional normalized ratio of the outer and the inner regions of the lungs was similar between both nebulizers.
Conclusions: This study demonstrated the high superiority of the new system combining a vibrating-mesh nebulizer with a valved holding chamber to deliver nebulized particles into the lungs as comparted to a constant-output jet nebulizer with a corrugated tube.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11095-016-2061-7 | DOI Listing |
Device
December 2024
Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716.
Modeling aerosol dynamics in the airways is challenging, and most modern personalized tools consider only a single inhalation maneuver through less than 10% of the total lung volume. Here, we present an modeling pipeline to produce a device that preserves patient-specific upper airways while approximating deeper airways, capable of achieving total lung volumes over 7 liters. The modular system, called TIDAL, includes tunable inhalation and exhalation breathing capabilities with resting flow rates up to 30 liters per minute.
View Article and Find Full Text PDFAnaesth Crit Care Pain Med
December 2024
Perioperative Care Program, Perioperative Medicine Team, Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Ave, Nedlands WA 6009, Perth, Australia; Division of Emergency Medicine, Anaesthesia and Pain Medicine, Medical School, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Perth, Australia; School of Human Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Perth, Australia; Institute for Paediatric Perioperative Excellence, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Perth, Australia; Department of Anaesthesia and Pain Medicine, Perth Children's Hospital, 15 Hospital Ave, Nedlands WA 6009, Perth, Australia. Electronic address:
J Aerosol Med Pulm Drug Deliv
December 2024
Department of Cardiopulmonary Sciences, Division of Respiratory Care, Rush University, Chicago, Illinois, USA.
Aerosol delivery may be enhanced by utilizing an inspiration-synchronized nebulization mode, where nebulization occurs only during inspiration. This study aimed to compare aerosol delivery of albuterol via a prototype of an inspiration-synchronized vibrating mesh nebulizer (VMN) versus continuous VMN during invasive mechanical ventilation. A critical care ventilator equipped with a heated-wire circuit to deliver adult parameters was attached to an endotracheal tube (ETT), a collection filter, and a test lung.
View Article and Find Full Text PDFAntibiotics (Basel)
November 2024
Division of Pulmonary and Critical Care Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33342, Taiwan.
Pediatr Pulmonol
November 2024
Department of Cardiopulmonary Sciences, Division of Respiratory Care, Rush University, Chicago, Illinois, USA.
Background: An inspiration-synchronized vibrating mesh nebulizer (VMN) has been reported to improve aerosol delivery during adult mechanical ventilation. A prototype VMN generating smaller particles was developed. We aimed to compare the aerosol delivery efficiency of small-particle and conventional VMNs in inspiration-synchronized and continuous modes during neonatal and pediatric mechanical ventilation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!