The black yeast is a widespread polyextremophile and human pathogen, that is found in extreme natural habitats and man-made environments such as dishwashers. It can cause various diseases ranging from phaeohyphomycosis and systemic infections, with fatality rates reaching 40%. While the number of cases in immunocompromised patients are increasing, knowledge of the infections, virulence factors and host response is still scarce. In this study, for the first time, an artificial infection of an skin model with was monitored microscopically and transcriptomically. Results show that is able to actively grow and penetrate the skin. The analysis of the genomic and RNA-sequencing data delivers a rich and complex transcriptome where circular RNAs, fusion transcripts, long non-coding RNAs and antisense transcripts are found. Changes in transcription strongly affect pathways related to nutrients acquisition, energy metabolism, cell wall, morphological switch, and known virulence factors. The L-Tyrosine melanin pathway is specifically upregulated during infection. Moreover the production of secondary metabolites, especially alkaloids, is increased. Our study is the first that gives an insight into the complexity of the transcriptome of during artificial skin infections and reveals new virulence factors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5075926 | PMC |
http://dx.doi.org/10.3389/fcimb.2016.00136 | DOI Listing |
Virulence
December 2025
Department of Infectious Diseases, Univ Rouen Normandie, Université de Caen Normandie, INSERM, Normandie Univ, DYNAMICURE UMR 1311, CHU Rouen, Rouen, France.
Specific determinants associated with Uropathogenic (UPEC) causing recurrent cystitis are still poorly characterized. Using strains from a previous clinical study (Vitale study, clinicaltrials.gov, identifier NCT02292160) the aims of this study were (i) to describe genomic and phenotypic traits associated with recurrence using a large collection of recurrent and paired sporadic UPEC isolates and (ii) to explore within-host genomic adaptation associated with recurrence using series of 2 to 5 sequential UPEC isolates.
View Article and Find Full Text PDFVirulence
December 2025
The Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.
Infection with is one of the most common infections of mankind. Infection typically occurs in childhood and persists for the lifetime of the host unless eradicated with antimicrobials. The organism colonizes the stomach and causes gastritis.
View Article and Find Full Text PDFJ Food Prot
December 2024
Université Paris-Saclay, Micalis Institute, INRAE, AgroParisTech, 78352 Jouy en Josas, France. Electronic address:
Staphylococcus aureus is a pathogenic microorganism often found in animal-derived foods and is known for its ability to readily develop resistance to antibiotic treatments. This study was designed to determine prevalence of S. aureus strains in raw milk and meat in Italy and to evaluate their antibiotic resistance profiles and biofilm production.
View Article and Find Full Text PDFJ Glob Antimicrob Resist
December 2024
Department of Hygiene, Sapporo Medical University School of Medicine, Hokkaido, Sapporo 060-8556, Japan. Electronic address:
Objectives: Staphylococcus aureus is a major cause of bloodstream infections. The recent epidemiological features and antimicrobial resistance trend were analyzed for methicillin-resistant and susceptible S. aureus (MRSA/MSSA) isolates from blood samples in northern Japan.
View Article and Find Full Text PDFFish Shellfish Immunol
December 2024
Norwegian Veterinary Institute, Postboks 64, 1431 Ås, Norway. Electronic address:
Infectious Salmon Anaemia virus (ISAV) is an orthomyxovirus that causes large economic losses in Atlantic salmon (Salmo salar L.) aquaculture. All virulent ISAV variants originally emerged from a non-virulent subtype, ISAV-HPR0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!