Background: Job burnout has become a rampant epidemic in working societies, causing high productivity loss and healthcare costs. An easy accessible tool to detect clinically relevant risk may bear the potential to timely avert the dire sequelae of burnout. As a start, we performed a proof of concept study to test the utilization of a mobile health web application for a free and anonymous burnout risk assessment with established questionnaires.
Methods: We designed a client-side javascript web application for users who filled out demographic and psychometric data forms over the internet. Users were recruited through social media, back links from hospital websites, and search engine optimization. Similar to population-based studies, we used the Maslach Burnout Inventory-General Survey (MBI-GS) to calculate a burnout risk index (BRIX). As additional mental health burden indices, users filled out the Perceived Stress Scale, Insomina Severity Index, and Profile of Mood States.
Results: Within six months, the MBI-GS was completed by 11,311 users (median age 33 years, 85 % women) of whom 20.0 % had no clinically relevant burnout risk, 54.7 % had mild-to-moderate risk, and 25.3 % had high risk. In the 2947 users completing all questionnaires, female sex ( = -0.03), cohabiting ( = -0.03), negative affect ( = 0.46), positive affect ( = -0.20), perceived stress ( = 0.18), and insomnia symptoms ( = 0.04) explained 56.2 % of the variance in the continuously scaled BRIX. The reliability was good to excellent for all psychometric scales. The weighting of the BRIX with mental health burden indices primarily modified the risk in users with mild-to-moderate burnout risk.
Conclusions: A low-threshold web application can reliably assess the risk of job burnout. As the bulk of users had clinically relevant burnout scores, a web application may be useful to target employees at risk. The clinical value of the BRIX and its modification with coexistent/absent mental health burden awaits evaluation with work and health outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5093935 | PMC |
http://dx.doi.org/10.1186/s13030-016-0082-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!