Neurotransporters located in synaptic vesicles are essential for communication between nerve cells in a process mediated by neurotransmitters. Vesicular monoamine transporter (VMAT), a member of the largest superfamily of transporters, mediates transport of monoamines to synaptic vesicles and storage organelles in a process that involves exchange of two H per substrate. VMAT transport is inhibited by the competitive inhibitor reserpine, a second-line agent to treat hypertension, and by the noncompetitive inhibitor tetrabenazine, presently in use for symptomatic treatment of hyperkinetic disorders. During the transport cycle, VMAT is expected to occupy at least three different conformations: cytoplasm-facing, occluded, and lumen-facing. The lumen- to cytoplasm-facing transition, facilitated by protonation of at least one of the essential membrane-embedded carboxyls, generates a binding site for reserpine. Here we have identified residues in the cytoplasmic gate and show that mutations that disrupt the interactions in this gate also shift the equilibrium toward the cytoplasm-facing conformation, emulating the effect of protonation. These experiments provide significant insight into the role of proton translocation in the conformational dynamics of a mammalian H-coupled antiporter, and also identify key aspects of the mode of action and binding of two potent inhibitors of VMAT2: reserpine binds the cytoplasm-facing conformation, and tetrabenazine binds the lumen-facing conformation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5127352 | PMC |
http://dx.doi.org/10.1073/pnas.1605162113 | DOI Listing |
Neuropsychopharmacology
January 2025
Neurocrine Biosciences, Inc., San Diego, CA, USA.
Positron emission tomography (PET) is frequently used to obtain target occupancy (%TO) of central nervous system (CNS) drug candidates during clinical development. Obtaining %TO with PET can be particularly powerful when the %TO associated with efficacy is known for a protein target. Using the radiotracer [F]AV-133, the relationship between plasma concentration (PK) and %TO of NBI-750142, an experimental inhibitor of the vesicular monoamine transporter type 2 (VMAT2) was obtained in both nonhuman primate (NHP) and human.
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
Vesicular monoamine transporter 2 (VMAT2) is crucial for packaging monoamine neurotransmitters into synaptic vesicles, with their dysregulation linked to schizophrenia, mood disorders, and Parkinson's disease. Tetrabenazine (TBZ) and valbenazine (VBZ), both FDA-approved VMAT2 inhibitors, are employed to treat chorea and tardive dyskinesia (TD). Our study presents the structures of VMAT2 bound to substrates serotonin (5-HT) and dopamine (DA), as well as the inhibitors TBZ and VBZ.
View Article and Find Full Text PDFExpert Opin Pharmacother
December 2024
Department of Neurology, UTHealth Houston McGovern Medical School, Houston, TX, USA.
Introduction: Chorea is a motor manifestation of Huntington's disease (HD), which can lead to decreased functional independence and falls. Even though multiple classes of medications have been used to treat this symptom, only the vesicular monoamine transporter 2 (VMAT2) inhibitors tetrabenazine, deutetrabenazine, and valbenazine have been approved by the FDA for this indication.
Areas Covered: This article reviews the pharmacological properties, clinical efficacy, safety, and tolerability of valbenazine in the treatment of chorea in HD.
Neuropharmacology
December 2024
- Department of Psychopharmacology, Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia. Electronic address:
Background: Apathy is a syndrome of decreased goal-directed activity, one of the main features of different brain disorders. Despite its high prevalence and life-threatening potential, there are currently very few options for its pharmacological treatment, which may be related to the lack of valid animal models.
Aims: The vesicular monoamine transporter 2 inhibitor tetrabenazine (TBZ) was used in this study to model apathy-related behavior in pathologies linked to a depletion of dopamine.
J Am Chem Soc
January 2025
College of Chemistry, Beijing Normal University, Beijing 100875, China.
The quantitative analysis of vesicular neurotransmitters in neurons in situ is paramount for investigating neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease (PD). Unfortunately, a direct approach for monitoring neurotransmitter chemistry in single vesicles in fresh brain tissue has remained inaccessible so far. Here, we introduce an innovative platform of single-vesicle electrochemistry (SVE) in fresh brain tissue, enabling the quantification of neurotransmitters at the single-vesicle level for both soma and varicosity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!