Background: α1,3-Galactosyltransferase (GGTA1) is essential for the biosynthesis of glycoproteins and therefore a simple and effective target for disrupting the expression of galactose α-1,3-galactose epitopes, which mediate hyperacute rejection (HAR) in xenotransplantation. Miniature pigs are considered to have the greatest potential as xenotransplantation donors. A GGTA1-knockout (GTKO) miniature pig might mitigate or prevent HAR in xenotransplantation.
Methods: Transcription activator-like effector nucleases (TALENs) were designed to target exon 6 of porcine GGTA1 gene. The targeting activity was evaluated using a luciferase SSA recombination assay. Biallelic GTKO cell lines were established from single-cell colonies of fetal fibroblasts derived from Diannan miniature pigs following transfection by electroporation with TALEN plasmids. One cell line was selected as donor cell line for somatic cell nuclear transfer (SCNT) for the generation of GTKO pigs. GTKO aborted fetuses, stillborn fetuses and live piglets were obtained. Genotyping of the collected cloned individuals was performed. The Gal expression in the fibroblasts and one piglet was analyzed by fluorescence activated cell sorting (FACS), confocal microscopy, immunohistochemical (IHC) staining and western blotting.
Results: The luciferase SSA recombination assay revealed that the targeting activities of the designed TALENs were 17.1-fold higher than those of the control. Three cell lines (3/126) showed GGTA1 biallelic knockout after modification by the TALENs. The GGTA1 biallelic modified C99# cell line enabled high-quality SCNT, as evidenced by the 22.3 % (458/2068) blastocyst developmental rate of the reconstructed embryos. The reconstructed GTKO embryos were subsequently transferred into 18 recipient gilts, of which 12 became pregnant, and six miscarried. Eight aborted fetuses were collected from the gilts that miscarried. One live fetus was obtained from one surrogate by caesarean after 33 d of gestation for genotyping. In total, 12 live and two stillborn piglets were collected from six surrogates by either caesarean or natural birth. Sequencing analyses of the target site confirmed the homozygous GGTA1-null mutation in all fetuses and piglets, consistent with the genotype of the donor cells. Furthermore, FACS, confocal microscopy, IHC and western blotting analyses demonstrated that Gal epitopes were completely absent from the fibroblasts, kidneys and pancreas of one GTKO piglet.
Conclusions: TALENs combined with SCNT were successfully used to generate GTKO Diannan miniature piglets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5100250 | PMC |
http://dx.doi.org/10.1186/s12958-016-0212-7 | DOI Listing |
Sci Data
December 2024
Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, 650201, China.
The Banna miniature inbred pig (BN) is an intensively inbred line for biomedical research and xenotransplantation due to its low individual variation and stable genetic background. Although it is originated from the Diannan miniature pig (DN), substantial genetic changes have actually occurred. However, the lack of a BN reference genome has limited studies on the complete genomic architecture and utilization as a biomedical model.
View Article and Find Full Text PDFSci Data
October 2023
College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
The production of semen in boars involves multiple reproductive glands, including the testis (Tes), epididymis (Epi), vesicular gland (VG), prostate gland (PG), and bulbourethral gland (BG). However, previous studies on boar reproduction primarily focused on the testis, with little attention paid to the other glands. Here, we integrated single-molecule long-read sequencing with short-read sequencing to characterize the RNA landscape from five glands of Banna mini-pig inbred line (BMI) and Diannan small-ear pigs (DSE).
View Article and Find Full Text PDFLife (Basel)
April 2022
Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Kunming 650201, China.
As a member of the PIKs family, PIK3C3 participates in autophagy and plays a central role in liver function. Several studies demonstrated that the complete suppression of PIK3C3 in mammals can cause hepatomegaly and hepatosteatosis. However, the function of PIK3C3 overexpression on the liver and other organs is still unknown.
View Article and Find Full Text PDFFront Vet Sci
April 2022
Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.
Activation of human immune T-cells by swine leukocyte antigens class I (SLA-I) and class II (SLA-II) leads to xenograft destruction. Here, we generated the GGTA1, B2M, and CIITA (GBC) triple-gene-modified miniature pigs, analyzed the transcriptome of GBC-modified peripheral blood mononuclear cells (PBMCs) in the pig's spleen, and investigated their effectiveness in anti-immunological rejection. A total of six cloned piglets were successfully generated using somatic cell nuclear transfer, one of them carrying the heterozygous mutations in triple genes and the other five piglets carrying the homozygous mutations in GGTA1 and CIITA genes, but have the heterozygous mutation in the B2M gene.
View Article and Find Full Text PDFLife (Basel)
December 2021
Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China.
The base editing 3 (BE3) system, a single-base gene editing technology developed using CRISPR/Cas9n, has a broad range of applications for human disease model construction and gene therapy, as it is highly efficient, accurate, and non-destructive. P53 mutations are present in more than 50% of human malignancies. Due to the similarities between humans and pigs at the molecular level, pig models carrying P53 mutations can be used to research the mechanism of tumorigenesis and improve tumor diagnosis and treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!