Adipose-derived stem cells (ASCs) have shown potential in the treatment of a myriad of diseases; however, infusion of cells alone is unlikely to provide the full range of potential therapeutic applications. Transient genetic manipulation of ASCs could increase their repair and regeneration characteristics in a disease-specific context, essentially transforming them into drug-eluting depots. The goal of this study was to determine the optimal parameters necessary to transduce ASCs with recombinant adeno-associated virus (rAAV), an approved gene therapy vector that has never been associated with disease. Transduction and duration of gene expression of the most common recombinant AAV vectors were tested in this study. Among all tested serotypes, rAAV5 resulted in both the highest and longest term expression. Furthermore, we determined the glycosylation profile of ASCs before and after neuraminidase treatment and demonstrate that rAAV5 transduction requires plasma membrane-associated sialic acid. Future studies will focus on the optimization of gene delivery to ASCs, using rAAV5 as the vector of choice, to drive biological drug delivery, engraftment, and disease correction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5310236PMC
http://dx.doi.org/10.1089/hgtb.2016.123DOI Listing

Publication Analysis

Top Keywords

adeno-associated virus
8
adipose-derived stem
8
stem cells
8
ascs
5
virus transduces
4
transduces adipose-derived
4
cells greater
4
greater efficacy
4
efficacy adeno-associated
4
adeno-associated viral
4

Similar Publications

A Comprehensive Atlas of AAV Tropism in the Mouse.

Mol Ther

January 2025

Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address:

Gene therapy with Adeno-Associated Virus (AAV) vectors requires knowledge of their tropism within the body. Here we analyze the tropism of ten naturally occurring AAV serotypes (AAV3B, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAVrh8, AAVrh10 and AAVrh74) following systemic delivery into male and female mice. A transgene expressing ZsGreen and Cre recombinase was used to identify transduction in a cell-dependent manner based on fluorescence.

View Article and Find Full Text PDF

Atherosclerosis and aortic aneurysms are prevalent cardiovascular diseases in the elderly, characterized by chronic inflammation and oxidative stress. This study explores the role of CircXYLT1 in regulating oxidative stress and vascular remodeling in age-related vascular diseases. RNA sequencing revealed a significant upregulation of CircXYLT1 in the vascular tissues of aged mice, highlighting its potential role in age-related vascular diseases.

View Article and Find Full Text PDF

Background: Rheumatic heart disease (RHD), which is caused mainly by Group A Streptococcus, leads to fibrotic damage to heart valves. Recently, endothelial‒mesenchymal transition (EndMT), in which activin plays an important role, has been shown to be an important factor in RHD valvular injury. However, the mechanism of activin activity and EndMT in RHD valvular injury is not clear.

View Article and Find Full Text PDF

Semaphorin 3A (Sema3A) is an axon guidance molecule, which is also abundant in the adult central nervous system (CNS), particularly in perineuronal nets (PNNs). PNNs are extracellular matrix structures that restrict plasticity. The cellular sources of Sema3A in PNNs are unknown.

View Article and Find Full Text PDF

Adeno-associated viruses (AAVs) are non-pathogenic, replication-deficient viruses that have gained widespread attention for their application as gene therapy vectors. While these vectors offer high transduction efficiency and long-term gene expression, the host immune response poses a significant challenge to their clinical success. This review focuses on the obstacles to evaluating the humoral response to AAVs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!