Consequences of extracellular trap formation in sepsis.

Curr Opin Hematol

aDepartment of Surgery, Rhode Island Hospital bWarren Alpert Medical School, Brown University, Providence, Rhode Island, USA.

Published: January 2017

Purpose Of Review: This review will focus on in-vivo findings derived from animal models of sepsis regarding the trapping role of neutrophil extracellular traps (NETs) which is difficult to assess ex vivo. The NETotic response of neutrophils at sites of sterile injury or autoimmune disease is destructive as no antimicrobial advantage to the host is realized and dampening NETosis is largely beneficial. In early stages of local infection or in sepsis, the trapping function of NETs may help abscess formation and limit microbial dissemination.

Recent Findings: The trapping function of NETs limits bacterial dissemination keeping an abscess from becoming bacteremic or confining tissue infection to local sites. Once containment is lost and disease has progressed, the best therapeutic approach suggested by animal studies to date is to inhibit protein arginine deiminase 4 and prevent NETosis rather than attempting to neutralize caustic NET components. Prognostic value may best be realized by taking cell free DNA, citrulllinated histones, neutrophil function and counts of immature granulocytes into consideration rather than rely on any one measure alone.

Summary: The trapping function of NETs may supercede the value of antimicrobial function in the early phases of sepsis such that degradation of the DNA backbone is contraindicated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5892420PMC
http://dx.doi.org/10.1097/MOH.0000000000000303DOI Listing

Publication Analysis

Top Keywords

trapping function
12
function nets
12
sepsis trapping
8
function
5
consequences extracellular
4
extracellular trap
4
trap formation
4
sepsis
4
formation sepsis
4
sepsis purpose
4

Similar Publications

Robust dioxin-linked metallophthalocyanine tbo topology covalent organic frameworks and their photocatalytic properties.

Natl Sci Rev

January 2025

Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.

Constructing 3D functional covalent organic frameworks (COFs) with both robust linkage and planar macrocycle building blocks still remains a challenge due to the difficulty in adjusting both the crystallinity and the dominant 2D structures. In addition, it is also challenging to selectively convert inert C(sp)-H bonds into value-added chemicals. Herein, robust 3D COFs, USTB-28-M (M=Co, Ni, Cu), have been polymerized from the nucleophilic aromatic substitution reaction of -symmetric 2,3,6,7,14,15-hexahydroxyltriptycene with -symmetric hexadecafluorophthalocyanine (MPcF) under solvothermal conditions.

View Article and Find Full Text PDF

Developing a self-sensitized catalyst from earth-abundant elements, capable of efficient light harvesting and electron transfer, is crucial for enhancing the efficacy of CO transformation, a critical step in environmental cleanup and advancing clean energy prospects. Traditional approaches relying on external photosensitizers, comprising 4d/5d metal complexes, involve intermolecular electron transfer, and attachment of photosensitizing arms to the catalyst necessitates intramolecular electron transfer, underscoring the need for a more integrated solution. We report a new Cu(ii) complex, K[CuNDPA] (1[K(18-crown-6)]), bearing a dipyrrin amide-based trianionic tetradentate ligand, NDPA (HL), which is capable of harnessing light energy, despite having a paramagnetic Cu(ii) centre, without any external photosensitizer and photocatalytically reducing CO to CO in acetonitrile : water (19 : 1 v/v) with a TON as high as 1132, a TOF of 566 h and a selectivity of 99%.

View Article and Find Full Text PDF

This study investigates the formation of carbon dioxide clathrate hydrates under conditions simulating interstellar environments, a process of significant astrophysical and industrial relevance. Clathrate hydrates, where gas molecules are trapped within water ice cages, play an essential role in both carbon sequestration strategies and understanding of the behavior of ices in space. We employed a combination of Fourier Transform Infrared (FTIR) spectroscopy, mass spectrometry, temperature-programmed desorption (TPD), and Density Functional Theory (DFT) calculations to explore thin films of HO:CO ice mixtures with varying CO concentrations (5-75%) prepared by vapor deposition at temperatures ranging between 11 and 180 K.

View Article and Find Full Text PDF

Plastic pollution threatens almost every ecosystem in the world. Critically, many animals consume plastic, in part because plastic particles often look or smell like food. Plastic ingestion is thus an evolutionary trap, a phenomenon that occurs when cues are decoupled from their previously associated high fitness outcomes.

View Article and Find Full Text PDF

Preliminary experimental study on a novel device using biomaterial for shunting fibrotic bleb following Ahmed glaucoma valve surgery in dogs.

Sci Rep

January 2025

Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea.

This study aimed to design and evaluate a novel trans-bleb device (TBD) for draining aqueous humor trapped within fibrotic blebs following Ahmed glaucoma valve (AGV) implantation in dogs. Two clinically normal, purpose-bred Beagles underwent AGV implantation surgery in one eye. When a bleb was formed with increased intraocular pressure (IOP), the TBD was inserted through a fenestration created in the bleb.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!