Methylenetetrahydrofolate reductase (MTHFR) c.677C>T and c.1298A>C variants were known to be associated with prostate cancer (PCa) risk with conflicting results, because of MTHFR and nutrient status interaction in the prostate development. In this large-scale, hospital-based, case-control study of 1817 PCa cases and 2026 cancer-free controls, we aimed to clarify the association between these two MTHFR variants and PCa risk in Shanghai and to explore the underlying molecular mechanisms. We found that both the heterozygous CT (adjusted OR = 0.78, 95% CI: 0.67-0.92) and the homozygous TT genotypes (adjusted OR = 0.68, 95% CI: 0.55-0.83) of c.677C>T were associated with a significantly decreased risk of PCa compared with homozygous wild-type CC genotype, respectively, using multivariate logistic regression. Furthermore, we confirmed that MTHFR c.677T allele was related to an increased serum homocysteine level in the Han Chinese population in Shanghai. In the cultured PCa cell lines, we observed that MTHFR c.677T could elevate the cellular homocysteine level and cause DNA damage, thus increasing cell apoptosis and finally inhibiting cell proliferation. In conclusion, MTHFR c.677T was a protective factor of PCa risk in ethnic Han Chinese males by inducing DNA damage and cell apoptosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5098242PMC
http://dx.doi.org/10.1038/srep36290DOI Listing

Publication Analysis

Top Keywords

han chinese
12
pca risk
12
mthfr c677t
12
mthfr c677c>t
8
cell proliferation
8
prostate cancer
8
chinese population
8
population shanghai
8
homocysteine level
8
dna damage
8

Similar Publications

Low-Intensity Pulsed Ultrasound Delays the Onset of Osteoporosis and Dyslipidemia in Mice With Premature Ovarian Insufficiency.

J Ultrasound Med

January 2025

State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China.

Objectives: The pathogenesis of premature ovarian insufficiency (POI) not only affects the ovarian structure and function but also gives rise to complications such as osteoporosis and dyslipidemia. Although low-intensity pulsed ultrasound (LIPUS) has been proven effective in treating POI, its impact on the associated complications remains unexplored. Therefore, this study aims to investigate the effects of LIPUS irradiation on osteoporosis and dyslipidemia in a mouse model of POI.

View Article and Find Full Text PDF

Selenium (Se) is an essential element for humans, playing a critical role in the functioning of the immune system. The global prevalence of dietary Se deficiency is a significant public health concern, largely attributed to the low levels of Se present in crops. The sufficient Se in plants and humans is determined by the presence of stable Se sources in the soil.

View Article and Find Full Text PDF

Objective: Osteoporosis is a systemic disease with high morbidity and significant adverse effects. Increasing evidence supports the close relationship between oxidative stress and osteoporosis, suggesting that treatment with antioxidants may be a viable approach. This study evaluated the antioxidant properties of dichotomitin (DH) and its potential protective effects against osteoporosis.

View Article and Find Full Text PDF

Prussian blue analogs (PBAs), as a classical kind of microporous materials, have attracted substantial interests considering their well-defined framework structures, unique physicochemical properties and low cost. However, PBAs typically adopt cubic structure that features small pore size and low specific surface area, which greatly limits their practical applications in various fields ranging from gas adsorption/separation to energy conversion/storage and biomedical treatments. Here we report the facile and general synthesis of unconventional hexagonal open PBA structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!