Pacific Water (PW) enters the Arctic Ocean through Bering Strait and brings in heat, fresh water, and nutrients from the northern Bering Sea. The circulation of PW in the central Arctic Ocean is only partially understood due to the lack of observations. In this paper, pathways of PW are investigated using simulations with six state-of-the art regional and global Ocean General Circulation Models (OGCMs). In the simulations, PW is tracked by a passive tracer, released in Bering Strait. Simulated PW spreads from the Bering Strait region in three major branches. One of them starts in the Barrow Canyon, bringing PW along the continental slope of Alaska into the Canadian Straits and then into Baffin Bay. The second begins in the vicinity of the Herald Canyon and transports PW along the continental slope of the East Siberian Sea into the Transpolar Drift, and then through Fram Strait and the Greenland Sea. The third branch begins near the Herald Shoal and the central Chukchi shelf and brings PW into the Beaufort Gyre. In the models, the wind, acting via Ekman pumping, drives the seasonal and interannual variability of PW in the Canadian Basin of the Arctic Ocean. The wind affects the simulated PW pathways by changing the vertical shear of the relative vorticity of the ocean flow in the Canada Basin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5070528 | PMC |
http://dx.doi.org/10.1002/2015JC011299 | DOI Listing |
Mol Ecol
January 2025
Globe Institute, University of Copenhagen, Copenhagen, Denmark.
The Arctic environment plays a critical role in the global climate system and marine biodiversity. The region's ice-covered expanses provide essential breeding and feeding grounds for a diverse assemblage of marine species, who have adapted to thrive in these harsh conditions and consequently are under threat from global warming. The bearded seal (Erignathus barbatus), including two subspecies (E.
View Article and Find Full Text PDFISME Commun
January 2025
Department of Energy - Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, United States.
Giant viruses (GVs; ) impact the biology and ecology of a wide range of eukaryotic hosts, with implications for global biogeochemical cycles. Here, we investigated GV niche separation in highly stratified Lake A at the northern coast of Ellesmere Island, Nunavut, Canada. This lake is composed of a layer of ice-covered freshwater that overlies saltwater derived from the ancient Arctic Ocean, and it therefore provides a broad gradient of environmental conditions and ecological habitats, each with a distinct protist community and rich assemblages of associated GVs.
View Article and Find Full Text PDFNat Commun
January 2025
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.
Settling aggregates transport organic matter from the ocean surface to the deep sea and seafloor. Though plankton communities impact carbon export, how specific organisms and their interactions affect export efficiency is unknown. Looking at 15 years of eDNA sequences (18S-V4) from settling and sedimented organic matter in the Fram Strait, here we observe that most phylogenetic groups were transferred from pelagic to benthic ecosystems.
View Article and Find Full Text PDFSci Total Environ
January 2025
State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
Surface water (SW) regulation, including reservoir regulation and surface water use, alters the soil-river hydrological processes and then influences the dissolved inorganic nitrogen (DIN) transport from rivers to oceans. However, global response of the DIN transfer to such human activity has not been well investigated. Therefore, in this study, we have taken advantage of a recently-developed land surface model to show the effects of SW regulation on DIN loading and transport in global major rivers.
View Article and Find Full Text PDFEnviron Res
January 2025
Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Carleton University, Ottawa, ON, K1A 0H3, Canada. Electronic address:
Metabolomics measures low molecular weight endogenous metabolites and changes linked to contaminant exposure in biota. Few studies have explored the relationship between metabolomics and contaminants in Arctic wildlife. We analyzed 239 endogenous metabolites and ∼150 persistent organic pollutants (POPs), including total mercury (THg), in the liver of polar bears and their ringed seal prey harvested from low Canadian Arctic (western Hudson Bay; WHB) and high Arctic (HA) locations during 2015-2016.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!