The mammalian kidney develops from a simple epithelial bud to an arborized network of tubules, which are fated to form the ureter, renal pelvis and collecting ducts. This process of ductal elaboration is achieved through an ancient developmental mechanism known as branching morphogenesis that is widely employed in glandular organs, the vasculature and lungs. It breaks up large solid tissues facilitating secretion, excretion and gas exchange, depending on the tissue. In the kidney, growth of the ureteric bud is driven by interactions between progenitor cells in the tips of the epithelial tree and their mesenchymal 'caps'. The cells of the cap mesenchyme give rise to nephrons; therefore, the interaction between these two cell populations is likely to be a critical driver of nephron number, which is determined during gestation. These cellular interactions are potentially affected by genetic mutations (congenital kidney diseases) and by changes in the fetal environment. Understanding the aetiology of congenital and acquired kidney diseases therefore requires a full appreciation of the processes involved in establishing the cellular architecture of the kidney and of the factors that affect the commitment of progenitor cells to form nephrons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nrneph.2016.157 | DOI Listing |
Sci Rep
January 2025
A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia.
Int J Mol Sci
December 2024
Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
Induced pluripotent stem cell (iPSC)-derived neurons (iNs) have been widely used as models of neurodevelopment and neurodegenerative diseases. Coating cell culture vessels with extracellular matrixes (ECMs) gives structural support and facilitates cell communication and differentiation, ultimately enhances neuronal functions. However, the relevance of different ECMs to the natural environment and their impact on neuronal differentiation have not been fully characterized.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, Saint-Petersburg 196625, Russia.
During all periods of male ontogenesis, physiological processes responsible for the correct functioning of reproductive organs and spermatogenesis are under the influence of various factors (neuro-humoral, genetic, and paratypical). Recently, the attention of researchers has increasingly turned to the study of epigenetic factors. In scientific publications, one can increasingly find references to the direct role of microRNAs, small non-coding RNAs involved in post-transcriptional regulation of gene expression, in the processes of development and functioning of reproductive organs.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Hefei National Laboratory for Physical Sciences at the Microscale, MOE Key Laboratory for Membrane-Less Organelles & Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
Mitochondrial function is essential for synaptic function. ATAD1, an AAA+ protease involved in mitochondrial quality control, governs fission-fusion dynamics within the organelle. However, the distribution and functional role of ATAD1 in neurons remain poorly understood.
View Article and Find Full Text PDFCells
December 2024
Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy.
Down syndrome (DS) is characterized by severe neurodevelopmental alterations that ultimately lead to the typical hallmark of DS: intellectual disability. In the DS brain, since the prenatal life stages, the number of astrocytes is disproportional compared to the healthy brain. This increase is due to a shift from neuron to astrocyte differentiation during brain development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!