A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The sigma-1 receptor mediates the beneficial effects of pridopidine in a mouse model of Huntington disease. | LitMetric

The tri-nucleotide repeat expansion underlying Huntington disease (HD) results in corticostriatal synaptic dysfunction and subsequent neurodegeneration of striatal medium spiny neurons (MSNs). HD is a devastating autosomal dominant disease with no disease-modifying treatments. Pridopidine, a postulated "dopamine stabilizer", has been shown to improve motor symptoms in clinical trials of HD. However, the target(s) and mechanism of action of pridopidine remain to be fully elucidated. As binding studies identified sigma-1 receptor (S1R) as a high-affinity receptor for pridopidine, we evaluated the relevance of S1R as a therapeutic target of pridopidine in HD. S1R is an endoplasmic reticulum - (ER) resident transmembrane protein and is regulated by ER calcium homeostasis, which is perturbed in HD. Consistent with ER calcium dysregulation, we observed striatal upregulation of S1R in aged YAC128 transgenic HD mice and HD patients. We previously demonstrated that dendritic MSN spines are lost in aged corticostriatal co-cultures from YAC128 mice. We report here that pridopidine and the chemically similar S1R agonist 3-PPP prevent MSN spine loss in aging YAC128 co-cultures. Spine protection was blocked by neuronal deletion of S1R. Pridopidine treatment suppressed supranormal ER Ca release, restored ER calcium levels and reduced excessive store-operated calcium (SOC) entry in spines, which may account for its synaptoprotective effects. Normalization of ER Ca levels by pridopidine was prevented by S1R deletion. To evaluate long-term effects of pridopidine, we analyzed expression profiles of calcium signaling genes. Pridopidine elevated striatal expression of calbindin and homer1a, whereas their striatal expression was reduced in aged Q175KI and YAC128 HD mouse models compared to WT. Pridopidine and 3-PPP are proposed to prevent calcium dysregulation and synaptic loss in a YAC128 corticostriatal co-culture model of HD. The actions of pridopidine were mediated by S1R and led to normalization of ER Ca release, ER Ca levels and spine SOC entry in YAC128 MSNs. This is a new potential mechanism of action for pridopidine, highlighting S1R as a potential target for HD therapy. Upregulation of striatal proteins that regulate calcium, including calbindin and homer1a, upon chronic therapy with pridopidine, may further contribute to long-term beneficial effects of pridopidine in HD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5214572PMC
http://dx.doi.org/10.1016/j.nbd.2016.10.006DOI Listing

Publication Analysis

Top Keywords

pridopidine
15
effects pridopidine
12
s1r
9
sigma-1 receptor
8
beneficial effects
8
huntington disease
8
mechanism action
8
action pridopidine
8
calcium dysregulation
8
soc entry
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!