Brivaracetam, or (2S)-2-[(4R)-2-oxo-4-propyl-pyrrolidin-1-yl] butanamide, is an active pharmaceutical ingredient designed for the treatment of epilepsy. During the development of the IV administration mode, a liquid-liquid miscibility gap has been observed with pure water, isotonic and hypertonic solutions (vehicle at 0.9% w/w and 5%w/w NaCl respectively). The study reveals that the NaCl concentration has a direct impact on the extent of the demixing domain; from a sub-micronic demixing in pure water towards a macroscopic miscibility gap in hypertonic aqueous solutions. The thorough exploration of these heterogeneous equilibria led to define experimental parameters for safe IV injections without risk of liquid - liquid miscibility gap at 37°C.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2016.11.003DOI Listing

Publication Analysis

Top Keywords

miscibility gap
16
liquid-liquid miscibility
8
pure water
8
impact sodium
4
sodium chloride
4
chloride expansion
4
expansion liquid-liquid
4
miscibility
4
gap
4
gap api/water
4

Similar Publications

Unlabelled: At temperatures above about 600 °C, alkali feldspar forms a continuous solid solution between the Na and K end members. Towards lower temperatures a miscibility gap opens, and alkali feldspar of intermediate composition exsolves, forming an intergrowth of relatively more Na-rich and K-rich lamellae. During exsolution, the crystal structure usually remains coherent across the lamellar interfaces, a feature that may be preserved over geological times.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how the yeast C. jadinii grows on ethanol as a carbon source, looking specifically at growth rates, energy requirements, and biomass composition across different culture methods.
  • In ethanol-limited conditions, C. jadinii CBS 621 achieves effective biomass yields and demonstrates a stable protein content, even at low growth rates, indicating its potential for producing single-cell protein.
  • The research also finds that various C. jadinii strains grow rapidly on ethanol, and the results from chemostat cultures can help model production outcomes in larger fed-batch systems, highlighting differences in protein content due to cultivation conditions.
View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the challenges and mechanisms of CO-enhanced shale oil recovery, emphasizing the impact of nanoscale pores and fractures on the process.
  • The researchers used a novel nanofluidic method to determine the minimum miscible pressure for CO and octane, enabling them to explore displacement behaviors in different micro-nano networks.
  • The findings reveal that miscible flooding significantly improves recovery efficiency, especially in heterogeneous conditions, and the displacement process involves distinct stages including pressure-driven flow and matrix oil production.
View Article and Find Full Text PDF

A series of the calcium-nickel carbonate solid solutions [(CaNi)CO] were synthesized and their dissolution in N-degassed water (NDW) and CO-saturated water (CSW) at 25 °C was experimentally investigated. During dissolution of the synthetic solids (Ni-bearing calcite, amorphous Ca-bearing NiCO and their mixtures), the Ni-calcite and the Ca-NiCO dissolved first followed by the formation of the Ni-bearing aragonite-structure phases. After 240-300 days of dissolution in NDW, the water solutions achieved the stable Ca and Ni concentrations of 0.

View Article and Find Full Text PDF

Medium-entropy Zr-Nb-Ti (ZNT) alloys are being extensively investigated as load-bearing implant materials because of their exceptional biocompatibility and corrosion resistance, and low magnetic susceptibility. Nevertheless, enhancing their yield strength while simultaneously decreasing their elastic modulus presents a formidable obstacle, significantly constraining their broader utilization as metallic biomaterials. In this study, three medium-entropy ZNT alloys, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!