Introduction: Due to waning immunity, infant vaccination with meningococcal serogroup C conjugated (MenCC) vaccines is insufficient to maintain long-term individual protection. Adolescent booster vaccination is thought to offer direct protection against invasive meningococcal disease (IMD) but also to reduce meningococcal carriage and transmission and in this way establish herd protection in the population. Previously, we studied antibody levels after adolescent MenCC booster vaccination. In the present study, the adolescent vaccinees were revisited after three years to determine antibody persistence and to predict long-term protection.

Methods: Meningococcal serogroup C tetanus toxoid conjugated (MenC-TT) vaccine was administered to 10-, 12- and 15-year old participants who had been primed nine years earlier with a single dose of MenC-TT vaccine. Blood samples were collected before, 1month, 1year and 3years after the adolescent booster vaccination. Functional antibody levels were measured with serum bactericidal assay using rabbit complement (rSBA). Meningococcal serogroup C polysaccharide and tetanus toxoid specific antibody levels were measured using fluorescent-bead-based multiplex immunoassay. Long-term protection was estimated using longitudinal multilevel antibody decay modeling.

Results: Of the original 268 participants, 201 (75%) were revisited after 3years. All participants still had an rSBA titer above the protective threshold of ⩾8 and 98% ⩾128. The 15-year-olds showed the highest antibody titers. Using a bi-exponential decay model, the median time to fall below the protection threshold (rSBA titer <8) was 16.3years, 45.9years and around 270years following the booster for the 10-, 12- and 15-year-olds, respectively.

Conclusions: After a first steep decline in antibody levels in the first year after the booster, antibody levels slowly declined between one and three years post-booster. A routine MenC-TT booster vaccination for adolescents in the Netherlands will likely provide long-term individual protection and potentially reduce the risk of resurgence of MenC disease in the general population.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2016.10.049DOI Listing

Publication Analysis

Top Keywords

meningococcal serogroup
16
booster vaccination
16
antibody levels
12
serogroup tetanus
8
adolescent booster
8
tetanus toxoid
8
menc-tt vaccine
8
levels measured
8
rsba titer
8
meningococcal
6

Similar Publications

Objectives: is a significant pathogen causing invasive meningococcal disease, posing clinical and public health concerns worldwide. This study aimed to investigate the genetic characteristics of clinical isolates at Okayama University Hospital in Japan.

Methods: Between 2018 and 2023, five clinical strains were isolated, of which three were subjected to the antimicrobial susceptibility testing and whole genetic analysis using MiSeq platform (Illumina, San Diego, CA, USA).

View Article and Find Full Text PDF

Background: The prevalence of meningococcal carriage and serogroup distribution is crucial for assessing the epidemiology of invasive meningococcal disease, forecasting outbreaks and formulating potential immunization strategies. Following the meningococcal carriage studies conducted in Turkey in 2016 and 2018, we planned to re-evaluate meningococcal carriage in children, adolescents and young adults during the COVID-19 pandemic period.

Methods: In the MENINGO-CARR-3 study, we collected nasopharyngeal samples from 1585 participants 0-24 years of age, across 9 different centers in Turkey.

View Article and Find Full Text PDF

Background: Patients with systemic lupus erythematosus (SLE) are susceptible to infectious diseases owing to various immunosuppressive treatments and disease characteristics. Meningococcal infections progress rapidly with a high incidence of severe complications and mortality; therefore, meningococcal vaccination is needed. However, there is limited evidence regarding the immunity and immunogenicity of patients with SLE.

View Article and Find Full Text PDF

IgA1 protease is one of the virulence factors of , and other pathogens causing bacterial meningitis. The aim of this research is to create recombinant proteins based on fragments of the mature IgA1 protease A-P from serogroup B strain H44/76. These proteins are potential components of an antimeningococcal vaccine for protection against infections caused by pathogenic strains of and other bacteria producing serine-type IgA1 proteases.

View Article and Find Full Text PDF

Characterization of Unusual Serogroups of .

Microorganisms

December 2024

Institut Pasteur, Invasive Bacterial Infections, Université Paris Cité, 75015 Paris, France.

Most cases of invasive meningococcal disease (IMD) in Europe are caused by isolates of the serogroups B, C, W, and Y. We aimed to explore cases caused by other unusual serogroups. We retrospectively screened IMD cases in the databases of the National Reference Center for Meningococci and in France between 2014 and 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!