Agri-wastes biochars viz. eucalyptus bark (EBBC), corn cob (CCBC), bamboo chips (BCBC), rice husk (RHBC) and rice straw (RSBC) and acid treated RSBC (T-RSBC), were characterized for their physico-chemical properties and sorption behaviour of atrazine and imidacloprid was studied. Kinetics study suggested that except atrazine adsorption on RSBC, which was best explained by the pseudo second order model, sorption of atrazine and imidacloprid on biochars was well explained by the modified Elovich model. Among the five normal biochars, the RSBC showed the maximum atrazine (37.5-70.7%) and imidacloprid (39.9-77.8%) sorption. The phosphoric acid treatment of RSBC further enhanced the sorption of both pesticides in T-RSBC. The Freundlich adsorption isotherms were highly nonlinear and percent adsorption decreased with increase in pesticide concentration in solution. Pesticide adsorption on biochars was affected by their aromaticity, polarity, pore diameter, pH and weak acid fraction. Thus, rice straw biochars have great potential for environmental implications and can be exploited as adsorbents for pesticide industry spewed waste water purification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2016.10.204DOI Listing

Publication Analysis

Top Keywords

atrazine imidacloprid
12
sorption behaviour
8
rice straw
8
biochars
6
sorption
5
atrazine
5
rsbc
5
characterization pesticide
4
pesticide sorption
4
behaviour slow
4

Similar Publications

There is growing interest in transcriptomic points of departure (tPOD) values from in vitro experiments as an alternative to animal test method. The study objective was to calculate tPODs in rainbow trout gill cells (RTgill-W1 following OECD 249) exposed to pesticides, and to evaluate how these values compare to fish acute and chronic toxicity data. Cells were exposed to one fungicide (chlorothalonil), ten herbicides (atrazine, glyphosate, imazethapyr, metolachlor, diquat, s-metolachlor, AMPA, dicamba, dimethenamid-P, metribuzin), eight insecticides (chlorpyrifos, diazinon, permethrin, carbaryl, clothianidin, imidacloprid, thiamethoxam, chlorantraniliprole), and OECD 249 positive control 3,4-dichloroaniline.

View Article and Find Full Text PDF

Toxicity assessment of effluent from a potato-processing industry in Cyprinus carpio.

Environ Toxicol Pharmacol

January 2025

Environmental Engineering Laboratory, Department of Sanitary and Environmental Engineering, Federal University of Santa Maria (UFSM), Avenida Roraima, 1000, Santa Maria, RS 97015-900, Brazil.

Potato (Solanum tuberosum) cultivation faces the challenge of excessive pesticide use. During processing, the disposal of large volumes of contaminated water into water bodies can result in severe environmental damage, such as fish deaths. This study aimed to evaluate the toxicological effects of chemical compounds present in the effluent from a potato-processing industry using the test organism Cyprinus carpio.

View Article and Find Full Text PDF

Mixed pesticide sources identified by using wastewater tracers in rivers of South African agricultural catchments.

Sci Total Environ

December 2024

Department of Earth Sciences, Stellenbosch University, Stellenbosch, South Africa; Soil Physics and Land Management Group, Wageningen University & Research, P.O. Box 47, 6700, AA, Wageningen, the Netherlands. Electronic address:

The agriculturally dominated region of the Western Cape, South Africa is vulnerable to pesticide pollution. A 2017-2019 pesticide monitoring campaign in the agricultural catchments of Grabouw, Piketberg and Hex River Valley identified year-round detections despite few agricultural applications, making pesticide pollution sources unclear. To better trace pesticide sources in these catchments, our study measured 19 pharmaceutical compounds and one industrial chemical as an indicator for wastewater treatment plant (WWTP) effluent - in addition to 44 pesticides.

View Article and Find Full Text PDF

Pesticides in wastewater treatment plant effluents in the Yeongsan River Basin, Korea: Occurrence and environmental risk assessment.

Sci Total Environ

October 2024

School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-Gwagiro, Gwangju 61005, Republic of Korea. Electronic address:

Pesticides are among the main drivers posing risks to aquatic environments, with effluents from wastewater treatment plants (WWTPs) serving as a major source. This study aimed to identify the primary pesticides for which there was a risk of release into aquatic environments through WWTP effluents, thereby enabling more effective contamination management in public water bodies. In this study, monitoring, risk assessment, and risk-based prioritization of 87 pesticides in effluents from three WWTPs in the Yeongsan River Basin, Korea, were conducted.

View Article and Find Full Text PDF

Free water surface constructed wetlands (FWSCWs) for the treatment of various wastewater types have evolved significantly over the last few decades. With an increasing need and interest in FWSCWs applications worldwide due to their cost-effectiveness and other benefits, this paper reviews recent literature on FWSCWs' ability to remove different types of pollutants such as nutrients (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!