Neurodegenerative diseases have been an unsolved riddle for quite a while; to date, there are no proper and effective curative treatments and only palliative and symptomatic treatments are available to treat these illnesses. The absence of therapeutic treatments for neurodegenerative ailments has huge economic hit and strain on the society. Pharmacotherapies and various surgical procedures like deep brain stimulation are being given to the patient, but they are only effective for the symptoms and not for the diseases. This paper reviews the recent studies and development of stem cell therapy for neurodegenerative disorders. Stem cell-based treatment is a promising new way to deal with neurodegenerative diseases. Stem cell transplantation can advance useful recuperation by delivering trophic elements that impel survival and recovery of host neurons in animal models and patients with neurodegenerative maladies. Several mechanisms, for example, substitution of lost cells, cell combination, release of neurotrophic factor, proliferation of endogenous stem cell, and transdifferentiation, may clarify positive remedial results. With the current advancements in the stem cell therapies, a new hope for the cure has come out since they have potential to be a cure for the same. This review compiles stem cell therapy recent conceptions in neurodegenerative and neurometabolic diseases and updates in this field. Graphical Absract ᅟ.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-016-0217-4DOI Listing

Publication Analysis

Top Keywords

stem cell
24
cell therapy
12
therapy neurodegenerative
8
neurodegenerative diseases
8
stem
7
cell
7
neurodegenerative
7
diseases
5
current perspective
4
perspective stem
4

Similar Publications

Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.

View Article and Find Full Text PDF

Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.

View Article and Find Full Text PDF

∆-Tetrahydrocannabinol Increases Growth Factor Release by Cultured Adipose Stem Cells and Adipose Tissue in vivo.

Tissue Eng Regen Med

January 2025

Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.

Background: Because of its biocompatibility and its soft and dynamic nature, the grafting of adipose tissue is regarded an ideal technique for soft-tissue repair. The adipose stem cells (ASCs) contribute significantly to the regenerative potential of adipose tissue, because they can differentiate into adipocytes and release growth factors for tissue repair and neovascularization to facilitate tissue survival. The present study tested the effect of administering a chronic low dose of ∆-tetrahydrocannabinol (THC) on these regenerative properties, in vitro and in vivo.

View Article and Find Full Text PDF

IL-7 secreted by keratinocytes induces melanogenesis via c-kit/MAPK signaling pathway in Melan-a melanocytes.

Arch Dermatol Res

January 2025

Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin, 17104, Republic of Korea.

Abnormal melanin synthesis within melanocytes can result in pigmentary skin disorders. Although pigmentation alterations associated with inflammation are frequently observed, the precise reason for this clinical observation is still unknown. More specifically, although many cytokines are known to be critical for inflammatory skin processes, it is unclear how they affect epidermal melanocyte function.

View Article and Find Full Text PDF

This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!