Prions, Chaperones, and Proteostasis in Yeast.

Cold Spring Harb Perspect Biol

School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332-2000.

Published: February 2017

Prions are alternatively folded, self-perpetuating protein isoforms involved in a variety of biological and pathological processes. Yeast prions are protein-based heritable elements that serve as an excellent experimental system for studying prion biology. The propagation of yeast prions is controlled by the same Hsp104/70/40 chaperone machinery that is involved in the protection of yeast cells against proteotoxic stress. Ribosome-associated chaperones, proteolytic pathways, cellular quality-control compartments, and cytoskeletal networks influence prion formation, maintenance, and toxicity. Environmental stresses lead to asymmetric prion distribution in cell divisions. Chaperones and cytoskeletal proteins mediate this effect. Overall, this is an intimate relationship with the protein quality-control machinery of the cell, which enables prions to be maintained and reproduced. The presence of many of these same mechanisms in higher eukaryotes has implications for the diagnosis and treatment of mammalian amyloid diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5287078PMC
http://dx.doi.org/10.1101/cshperspect.a023663DOI Listing

Publication Analysis

Top Keywords

yeast prions
12
prions
5
prions chaperones
4
chaperones proteostasis
4
yeast
4
proteostasis yeast
4
prions alternatively
4
alternatively folded
4
folded self-perpetuating
4
self-perpetuating protein
4

Similar Publications

The dynamic balance between formation and disaggregation of amyloid fibrils is associated with many neurodegenerative diseases. Multiple chaperones interact with and disaggregate amyloid fibrils, which impacts amyloid propagation and cellular phenotypes. However, it remains poorly understood whether and how site-specific binding of chaperones to amyloids facilitates the concerted disaggregation process and modulates physiological consequences in vivo.

View Article and Find Full Text PDF

[PSI]-CIC: A Deep-Learning Pipeline for the Annotation of Sectored Saccharomyces cerevisiae Colonies.

Bull Math Biol

December 2024

Department of Applied Mathematics, University of California, Merced, 5200 N Lake Drive, Merced, CA, 95343, USA.

The prion phenotype in yeast manifests as a white, pink, or red color pigment. Experimental manipulations destabilize prion phenotypes, and allow colonies to exhibit (red) sectored phenotypes within otherwise completely white colonies. Further investigation of the size and frequency of sectors that emerge as a result of experimental manipulation is capable of providing critical information on mechanisms of prion curing, but we lack a way to reliably extract this information.

View Article and Find Full Text PDF

Prion-like proteins play crucial parts in biological processes in organisms ranging from yeast to humans. For instance, many neurodegenerative diseases are believed to be caused by the production of prion-like proteins in neural tissue. As such, understanding the dynamics of prion-like protein production is a vital step toward treating neurodegenerative disease.

View Article and Find Full Text PDF

Prions represent epigenetic regulator proteins that can self-propagate their structure and confer their misfolded structure and function on normally folded proteins. Like the mammalian prion PrPSc, prions also occur in fungi. While a few prions, like Swi1, affect gene expression, none are shown to affect heterochromatin structure and function.

View Article and Find Full Text PDF

The screening of 166 extracts from tropical marine organisms (invertebrates, macroalgae) and 3 cyclolipopeptides from microorganisms against yeast prions highlighted the potential of Verongiida sponges to prevent the propagation of prions. We isolated the known compounds purealidin Q (), aplysamine-2 (), pseudoceratinine A (), aerophobin-2 (), aplysamine-1 (), and pseudoceratinine B () for the first time from the Wallisian sponge . We then tested compounds - and sixteen other bromotyrosine and bromophenol derivatives previously isolated from Verongiida sponges against yeast prions, demonstrating the potential of -, , , aplyzanzine C (), purealidin A (), psammaplysenes D () and F (), anomoian F (), and N,N-dimethyldibromotyramine ().

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!