Background: Obesity and overweight are consistently associated with metabolic disorders including hyperglycemia and hyperlipidemia. Herbal medicines have been currently suggested as an alternative source of potentially useful antihyperglycemic, antihyperlipidemic, antioxidant activities. The objective of this study was to assess the in vitro inhibitory effects of eleven herbal medicines on carbohydrate and lipid digestive enzymes and the key steps of lipid digestion including the inhibition of micelle formation and the ability to bind bile acid. In addition, antioxidant activity of herbal medicines was also investigated.
Methods: α-Glucosidase, pancreatic α-amylase, pancreatic lipase, and pancreatic cholesterol esterase inhibitory activities of aqueous extract of herbal medicines were measured using the enzymatic colorimetric assay. The formation of cholesterol micelles was determined using the cholesterol assay kit. The bile acid binding was measured using the colorimetric assay. Antioxidant activities were assessed by using four methods including Trolox equivalent antioxidant capacity (TEAC), oxygen radical absorbance capacity ORAC), superoxide radical scavenging activity (SRSA), and hydroxyl radical scavenging activity (HRSA).
Results: The extracts (1 mg/mL) markedly inhibited intestinal maltase (5.16 - 44.33 %), sucrase (1.25-45.86 %), pancreatic α-amylase (1.75-12.53 %), pancreatic lipase (21.42-85.93 %), and pancreatic cholesterol esterase (2.92-53.35 %). The results showed that all extracts exhibited the inhibitory activity against pancreatic lipase with the IC values ranging from 0.015 to 4.259 mg/mL. In addition, the incorporation of cholesterol into micelles was inhibited by the extracts (6.64-33.74 %). The extracts also bound glycodeoxycholic acid (9.9-15.08 %), taurodeoxycholic acid (12.55-18.18 %), and taurocholic acid (11.91 - 18.4 %). Furthermore, the extracts possessed various antioxidant activities including the TEAC values (0.50 - 4.70 μmol trolox/mg dried extract), the ORAC values (9.14-44.41 μmol trolox/mg dried extract), the SRSA (0.31 - 18.82 mg trolox/mg dried extract), and the HRSA (0.05-2.29 mg trolox/mg dried extract). The findings indicated that Syzygium aromaticum, Phyllanthus amarus, Thunbergia laurifolia were the effective promising antihyperglycemic and antihyperlipidemic agents. Statistical analysis demonstrated strong positive significant correlations between the contents of phenolic compounds and % inhibition of pancreatic lipase (r = 0.885, p < 0.001), % inhibition of pancreatic cholesterol esterase (r = 0.761, p < 0.001), and the TEAC value (r = 0.840, p < 0.001). Furthermore, there was a strongly positive correlation between the TEAC value and % inhibition of pancreatic cholesterol esterase (r = 0.851, p < 0.001) and % inhibition of pancreatic lipase (r = 0.755, p < 0.001).
Conclusions: Three herbal medicines including Syzygium aromaticum, Thunbergia laurifolia, and Phyllanthus amarus markedly inhibited the intestinal α-glucosidase, pancreatic α-amylase, pancreatic lipase, and pancreatic cholesterol esterase. They also reduced formation of cholesterol micelle and bound bile acid. The findings indicate that these herbal medicines might be a promising agent for antihyperglycemic, antihyperlipidemic, and antioxidant activities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5097378 | PMC |
http://dx.doi.org/10.1186/s12906-016-1424-2 | DOI Listing |
Nat Prod Res
January 2025
Laboratory of Organic Chemistry LR17-ES08 (Natural Substances Team), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia.
The phytochemical profile of various plant species reveals that some compounds possess notable antioxidant and antimicrobial properties. In this study we investigated for the first time, the antioxidant activity (FRAP, DPPH and TAC), total phenolic contents and total flavonoid contents of Delile ex Godr flowers extracts (-hexane, ethyl acetate and methanol) as well as their antimicrobial activity. The results obtained showed that the methanol extract contained the highest content of total phenolics (346.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of General Medicine, The Second Affiliated Hospital of Dalian Medical University, 116023 Dalian, Liaoning, China.
Alzheimer's disease (AD) is a common central neurodegenerative disease disorder characterized primarily by cognitive impairment and non-cognitive neuropsychiatric symptoms that significantly impact patients' daily lives and behavioral functioning. The pathogenesis of AD remains unclear and current Western medicines treatment are purely symptomatic, with a singular pathway, limited efficacy, and substantial toxicity and side effects. In recent years, as research into AD has deepened, there has been a gradual increase in the exploration and application of medicinal plants for the treatment of AD.
View Article and Find Full Text PDFJ Sep Sci
January 2025
Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds resulting from incomplete burning of organic materials. This work describes the successful layer-by-layer fabrication of a novel zinc oxide nanocomposite made of zinc oxide nanoparticles, aniline, sodium dodecyl sulfate, and modified multi-walled carbon nanotubes on a stainless steel wire by electrodeposition. The coating and extraction conditions were screened, optimized, and validated using factorial design and central composite design, respectively.
View Article and Find Full Text PDFViruses
January 2025
Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou 311100, China.
, a medicinal herbaceous plant documented in the Chinese Pharmacopoeia, is a promising candidate for research into plant-derived pharmaceuticals. However, the study of newly emerging viruses that threaten the cultivation of remains limited. In this study, plants exhibiting symptoms such as leaf yellowing, mottled leaves, and vein chlorosis were collected and subjected to RNA sequencing to identify potential viral pathogens.
View Article and Find Full Text PDFViruses
December 2024
Department of Rehabilitation and Regenerative Medicine, College of Physicians and Surgeons, Columbia University, HHSC-1518, 701 W. 168th Street, New York, NY 10032, USA.
This study explores the effects of plant compounds on human papillomavirus (HPV)-induced W12 cervical precancer cells and bioelectric signaling. The aim is to identify effective phytochemicals, both individually and in combination, that can prevent and treat HPV infection and HPV associated cervical cancer. Phytochemicals were tested using growth inhibition, combination, gene expression, RT PCR, and molecular docking assays.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!