AI Article Synopsis

  • A series of 4-PPY C-3 carboxamides with peptide side chains were created and tested for their ability to resolve chiral benzylic secondary alcohols.
  • The design emphasized using a tryptophan residue to enhance π-stacking interactions, supported by structure-based modeling techniques.
  • A specific catalyst with a LeuTrp-N-Boc side chain showed promising results, providing enantioselectivity values slightly over 10, highlighting the role of modeling in improving catalyst performance for potential large-scale applications.

Article Abstract

A series of 4-pyrrolidinopyridine (4-PPY) C-3 carboxamides containing peptide-based side chains have been synthesised and evaluated in the kinetic resolution of a small library of chiral benzylic secondary alcohols. A key design element was the incorporation of a tryptophan residue in the peptide side chain for promoting π-stacking between peptide side chain and the pyridinium ring of the N-acyl intermediate, in which modelling was used as a structure-based guiding tool. Together, a catalyst containing a LeuTrp-N-Boc side chain (catalyst 8) was identified that achieved s-values up to and in slight excess of 10. A transition-state model based on the modelling is proposed to explain the origin of enantioselectivity. This study establishes the usefulness of modelling as a structure-based guiding tool for enantioselectivity optimization as well as the potential for developing scalable peptide-based DMAP-type catalysts for large-scale resolution work.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6ob01991aDOI Listing

Publication Analysis

Top Keywords

side chain
12
4-ppy c-3
8
peptide side
8
modelling structure-based
8
structure-based guiding
8
guiding tool
8
catalytic enantioselective
4
enantioselective acyl
4
acyl transfer
4
transfer case
4

Similar Publications

The p53 protein is regarded as the "Guardian of the Genome," but its mutation is tumor progression and present in more than half of malignant tumors. The pro-metastatic property of mutant p53 makes a strong argument for targeting mutant p53 with new therapeutic strategies. However, mutant p53 was considered as a challenging target for drug discovery due to the lack of small molecular binding pockets.

View Article and Find Full Text PDF

The core component of the actin cytoskeleton is the globular protein G-actin, which reversibly polymerizes into filaments (F-actin). Budding yeast possesses a single actin that shares 87%-89% sequence identity with vertebrate actin isoforms. Previous structural studies indicate very close overlap of main-chain backbones.

View Article and Find Full Text PDF

The discovery of novel anti-cancer drugs motivated us to synthesize a new series of triple 1,2,3-triazole-based arm scaffolds featuring distinct un functionalized alkyl and/or aryl side chains with possible anti-cancer action using the click chemistry approach under both conventional and green microwave irradiation (MWI) methods. The Cu(I) catalyzed cycloaddition reaction of targeted tris-alkyne with un functionalized aliphatic and aromatic azides has been adopted as an efficient approach for synthesizing the desired click adducts. Microwave irradiation improved the synthetic processes, resulting in higher yields and faster reaction times.

View Article and Find Full Text PDF

O-Methyldehydroserine, ΔSer(Me), is a non-standard α,β-dehydroamino acid, which occurs naturally in Cyrmenins with potential pharmaceutical application. The C-terminal part and the side chain of the ΔSer(Me) residue constitute the β-methoxyacrylate unit, responsible for antifungal activity of Cyrmenins. The short model, Ac-ΔSer(Me)-OMe, was analyzed considering the geometrical isomer Z () and E ().

View Article and Find Full Text PDF

Mapping O- and N-Glycosylation in Transmembrane and Interface Regions of Proteins: Insights from a Database Search Study.

Int J Mol Sci

January 2025

Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independenței Str., 050095 Bucharest, Romania.

Glycosylation is a critical post-translational modification that influences protein folding, stability and function. While extensively studied in extracellular and intracellular regions, glycosylation within transmembrane (TM) regions and at membrane interfaces remains poorly understood. This study aimed to map O- and N-glycosylation sites in these regions using a comprehensive database search and structural validation where possible.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!