Real-world estimates of seasonal influenza vaccine effectiveness (VE) are important for early detection of vaccine failure. We developed a method for evaluating real-time in-season vaccine effectiveness (IVE) and overall seasonal VE. In a retrospective, register-based, cohort study including all two million individuals in Stockholm County, Sweden, during the influenza seasons from 2011/12 to 2014/15, vaccination status was obtained from Stockholm's vaccine register. Main outcomes were hospitalisation or primary care visits for influenza (International Classification of Disease (ICD)-10 codes J09-J11). VE was assessed using Cox multivariate stratified and non-stratified analyses adjusting for age, sex, socioeconomic status, comorbidities and previous influenza vaccinations. Stratified analyses showed moderate VE in prevention of influenza hospitalisations among chronically ill adults ≥ 65 years in two of four seasons, and lower but still significant VE in one season; 53% (95% confidence interval (CI): 33-67) in 2012/13, 55% (95% CI: 25-73) in 2013/14 and 18% (95% CI: 3-31) in 2014/15. In conclusion, seasonal influenza vaccination was associated with substantial reductions in influenza-specific hospitalisation, particularly in adults ≥ 65 years with underlying chronic conditions. With the use of population-based patient register data on influenza-specific outcomes it will be possible to obtain real-time estimates of seasonal influenza VE.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5114721 | PMC |
http://dx.doi.org/10.2807/1560-7917.ES.2016.21.43.30381 | DOI Listing |
Expert Rev Vaccines
January 2025
Hospital Universitario La Paz-IdiPAZ, Madrid, Spain.
Introduction: Vaccines to prevent important infections involving, e.g. influenza viruses, severe acute respiratory syndrome-causing coronaviruses (e.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Key Lab for Special Functional Materials of Ministry of Education, and School of Nanoscience and Materials Engineering, Henan University, 475004, Kaifeng, China. Electronic address:
Influenza A virus (IAV) and influenza B virus (IBV) with similar symptoms of infection caused a serious disease burden and economic losses in annual epidemic season, so it is important to quickly and accurately detect and distinguish between IAV and IBV during influenza season. Herein, the quantum dot microspheres (QDMS) were synthesized and applied to lateral flow immunoassays (LFIA), and a point-of-care (POC) biosensor that can discriminately and simultaneously diagnose IAV and IBV within 10 min was established. A double-sandwich QDMS nanotags was synthesized by immobilizing hydrophobic quantum dots (QDs) with chemical bonding method on a silica sphere template with an outer silica shell protection showed excellent stability and high fluorescence.
View Article and Find Full Text PDFHum Vaccin Immunother
December 2025
National Influenza Centre, Edificio Rondilla, Hospital Clínico Universitario de Valladolid, Valladolid, Spain.
Influenza accounts for 30% of the total morbidity and mortality in the European Union. However, the specific burden in different European countries is largely unknown, and more research is needed to ascertain the reality of this disease. In this retrospective study, we analyzed the burdens of hospitalization, intensive care unit (ICU) admission and in-hospital mortality in Spain over five seasons (2015-2020) via publicly available Minimum Basic Datasets (MDBS).
View Article and Find Full Text PDFJAMA Intern Med
January 2025
Research and Development, Veterans Affairs Puget Sound Health Care System, Seattle, Washington.
Importance: SARS-CoV-2, influenza, and respiratory syncytial virus (RSV) contribute to many hospitalizations and deaths each year. Understanding relative disease severity can help to inform vaccination guidance.
Objective: To compare disease severity of COVID-19, influenza, and RSV among US veterans.
J Virol
January 2025
MRC Translational Immune Discovery Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
Unlabelled: Current influenza vaccination approaches protect against specific viral strains, but do not consistently induce broad and long-lasting protection to the diversity of circulating influenza viruses. Single-cycle viruses delivered to the respiratory tract may offer a promising solution as they safely express a diverse array of viral antigens by undergoing just one round of cell infection in their host and stimulate broadly protective resident memory T-cell responses in the lung. We have previously developed a vaccine candidate called S-FLU, which is limited to a single cycle of infection by inactivation of the hemagglutinin signal sequence and induces a broadly cross-reactive T-cell response and antibodies to neuraminidase, but fails to induce neutralizing antibodies to hemagglutinin after intranasal administration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!