Sandwich assays are among the most powerful tools in molecular detection. These assays use "pairs" of affinity reagents so that the detection signal is generated only when both reagents bind simultaneously to different sites on the target molecule, enabling highly sensitive and specific measurements in complex samples. Thus, the capability to efficiently screen affinity reagent pairs at a high throughput is critical. In this work, we describe an experimental strategy for screening "aptamer pairs" at a throughput of 10 aptamer pairs per hour-which is many orders of magnitude higher than the current state of the art. The key step in our process is the conversion of solution-phase aptamers into "aptamer particles" such that we can directly measure the simultaneous binding of multiple aptamers to a target protein based on fluorescence signals and sort individual particles harboring aptamer pairs via the fluorescence-activated cell-sorter instrument. As proof of principle, we successfully isolated a high-quality DNA aptamer pair for plasminogen activator inhibitor 1 (PAI-1). Within only two rounds of screening, we discovered DNA aptamer pairs with low-nanomolar sensitivity in dilute serum and excellent specificity with minimal off-target binding even to closely related proteins such as PAI-2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.6b03450 | DOI Listing |
Anal Chem
January 2025
Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing 100048, China.
Continuous and reagentless biomolecular detection technologies are bringing an evolutionary influence on disease diagnostics and treatment. Aptamers are attractive as specific recognition probes because they are capable of regeneration without washing. Unfortunately, the affinity and dissociation kinetics of the aptamers developed to date show an inverse relationship, preventing continuous and reagentless detection of protein targets due to their low dissociation rates.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China. Electronic address:
Background: The excessive application of enrofloxacin (ENR) results in residues contaminating both food and the environment. Consequently, developing robust analytical methods for the selective detection of ENR is crucial. The photoelectrochemical (PEC) sensor has emerged as a highly sensitive analytical technique that has seen rapid development in recent years.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry, Boston College, Chestnut Hill, MA, USA.
Recent advances in gene editing and precise regulation of gene expression based on CRISPR technologies have provided powerful tools for the understanding and manipulation of gene functions. Fusing RNA aptamers to the sgRNA of CRISPR can recruit cognate RNA-binding protein (RBP) effectors to target genomic sites, and the expression of sgRNA containing different RNA aptamers permit simultaneous multiplexed and multifunctional gene regulations. Here, we report an intracellular directed evolution platform for RNA aptamers against intracellularly expressed RBPs.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China. Electronic address:
Background: The multifunctional cytokine interleukin-6 (IL-6) plays a pivotal role in chronic and acute inflammatory responses, underscoring the importance of accurately determining IL-6 levels for early diagnosis, prevention, and treatment of inflammation.
Results: This study developed a versatile and innovative single-particle surface-enhanced Raman spectroscopy (SERS) sensing platform for the precise and sensitive quantification of IL-6 in complex samples using a novel one-pot synthesized, silver ions-doped three-dimensional porous gold microparticles (PGMs) with abundant hot spots for robust SERS enhancement. By rationally designing rich cytosine-Ag-cytosine base pairs between IL-6 aptamers and complementary chains on the PGMs, we harnessed the SERS-enhancing effect to achieve highly sensitive and specific IL-6 quantification within a wide range of 10 to 10 mg/mL and a limit of detection (LOD) of 0.
Neuro Oncol
December 2024
Department of Neurological Surgery, Mayo Clinic; Rochester, MN, USA.
Background: While serial sampling of glioma tissue is rarely performed prior to recurrence, cerebrospinal fluid (CSF) is an underutilized longitudinal source of candidate glioma biomarkers for understanding therapeutic impacts. However, the impact of key variables to consider in longitudinal CSF samples for monitoring biomarker discovery, including anatomical location and post-surgical changes, remains unknown.
Methods: Aptamer-based proteomics was performed on 147 CSF samples from 74 patients, 71 of whom had grade 2-4 astrocytomas or grade 2-3 oligodendrogliomas.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!