The reaction medium has major impact on biocatalytic reaction systems and on their economic significance. To allow for tailored medium engineering, thermodynamic phenomena, intrinsic enzyme kinetics, and enzyme-solvent interactions have to be discriminated. To this end, enzyme reaction kinetic modeling was coupled with thermodynamic calculations based on investigations of the alcohol dehydrogenase from Lactobacillus brevis (LbADH) in monophasic water/methyl tert-butyl ether (MTBE) mixtures as a model solvent. Substrate concentrations and substrate thermodynamic activities were varied separately to identify the individual thermodynamic and kinetic effects on the enzyme activity. Microkinetic parameters based on concentration and thermodynamic activity were derived to successfully identify a positive effect of MTBE on the availability of the substrate to the enzyme, but a negative effect on the enzyme performance. In conclusion, thermodynamic activity-based kinetic modeling might be a suitable tool to initially curtail the type of enzyme-solvent interactions and thus, a powerful first step to potentially understand the phenomena that occur in nonconventional media in more detail. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:96-103, 2017.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/btpr.2401 | DOI Listing |
FEBS J
December 2020
Department of Chemistry, Washington State University, Pullman, WA, USA.
We explore the principles of pressure tolerance in enzymes of deep-sea fishes using lactate dehydrogenases (LDH) as a case study. We compared the effects of pressure on the activities of LDH from hadal snailfishes Notoliparis kermadecensis and Pseudoliparis swirei with those from a shallow-adapted Liparis florae and an abyssal grenadier Coryphaenoides armatus. We then quantified the LDH content in muscle homogenates using mass-spectrometric determination of the LDH-specific conserved peptide LNLVQR.
View Article and Find Full Text PDFBiotechnol Prog
January 2017
RWTH Aachen University, AVT - Enzyme Process Technology, Worringer Weg 1, Aachen, 52074, Germany.
The reaction medium has major impact on biocatalytic reaction systems and on their economic significance. To allow for tailored medium engineering, thermodynamic phenomena, intrinsic enzyme kinetics, and enzyme-solvent interactions have to be discriminated. To this end, enzyme reaction kinetic modeling was coupled with thermodynamic calculations based on investigations of the alcohol dehydrogenase from Lactobacillus brevis (LbADH) in monophasic water/methyl tert-butyl ether (MTBE) mixtures as a model solvent.
View Article and Find Full Text PDFProteins
April 2015
Department of Chemical Engineering, University of Washington, Seattle, Washington, 98105.
Molecular simulations of the enzymes Candida rugosa lipase and Bos taurus α-chymotrypsin in aqueous ionic liquids 1-butyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium ethyl sulfate were used to study the change in enzyme-solvent interactions induced by modification of the enzyme surface charge. The enzymes were altered by randomly mutating lysine surface residues to glutamate, effectively decreasing the net surface charge by two for each mutation. These mutations resemble succinylation of the enzyme by chemical modification, which has been shown to enhance the stability of both enzymes in ILs.
View Article and Find Full Text PDFChembiochem
May 2013
Loschmidt Laboratories, Department of Experimental Biology and Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5A13, 625 00 Brno, Czech Republic.
The use of enzymes for biocatalysis can be significantly enhanced by using organic cosolvents in the reaction mixtures. Selection of the cosolvent type and concentration range for an enzymatic reaction is challenging and requires extensive empirical testing. An understanding of protein-solvent interaction could provide a theoretical framework for rationalising the selection process.
View Article and Find Full Text PDFBiol Chem
January 2009
Institute for the Future of the Mind, Department of Pharmacology, Mansfield Road, Oxford University, Oxford OX1 3QT, UK.
Acetylcholinesterase (AChE) plays a central role in the development of Alzheimer's disease: AChE inhibition for preventing the characteristic dwindling of acetylcholine levels constitutes the current standard treatment for the disorder. Amongst the diverse risk factors contributing to the degenerative process, high cholesterol causes a reduction in the effectiveness of the otherwise therapeutic inhibitors of AChE. Our biochemical study on the activity of AChE elucidates the effect of amphiphilic molecules on the activity and kinetics of AChE, and sheds light onto the nature of the impact of these amphiphilic molecules on enzyme-inhibitor interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!