Background: Repression of the KAI1 metastasis suppressor gene is closely associated with malignancy and poor prognosis in many human cancer types including prostate cancer. Since gene repression in human cancers frequently results from epigenetic alterations by DNA methylation and histone modifications, we examined whether the KAI1 gene becomes silenced through these epigenetic mechanisms in prostate cancer.
Methods: KAI1 mRNA and protein levels were determined by RT-PCR and immunoblotting analyses, respectively. Methylation status of the KAI1 promoter DNA in prostate cancer cell lines and tissues was evaluated by methylation-specific PCR analysis of bisulfite-modified genomic DNAs. Methylated CpG sites in the KAI1 promoter were identified by sequencing the PCR clones of the bisulfite-modified KAI1 promoter DNA. KAI1 protein levels in human prostate cancer tissue samples were examined by immunofluorescence staining of the tissues with an anti-KAI1 antibody.
Results: Among the three human prostate cancer cell lines examined, PC3 and DU145 cells exhibited markedly decreased levels of KAI1 mRNA and protein as compared to LNCaP cells, even though the exogenous KAI1 promoter not being methylated was normally functional in all these cell lines. Treatment of the low KAI1-expressing cell lines with a demethylating agent, 5'-aza-2'-deoxycytidine, significantly elevated KAI1 expression levels, implicating the involvement of DNA methylation in KAI1 downregulation. Methylation of CpG islands within the KAI1 promoter region was observed in the low KAI1-expressing cells, but not in the high KAI1-expressing cells. Also, methyl CpG-binding proteins such as MBD2 and MeCP2 were complexed to the KAI1 promoter in the low KAI1-expressing cells. Bisulfite sequencing analysis identified the intensively methylated CpG residues in the KAI1 promoter clones derived from prostate cancer cells and tissues with no or low KAI1 expression. As in prostate cancer cell lines, prostate cancer tissues from patients also displayed a negative association between KAI1 expression levels and methylation status of the KAI1 promoter.
Conclusions: The present data suggest that the KAI1 gene might be repressed by epigenetic alterations through the promoter CpG-site methylation during prostate cancer progression. This epigenetic mechanism could provide a clue for understanding how the KAI1 gene was silenced in metastatic prostate cancers. Prostate 77: 350-360, 2017. © 2016 Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pros.23274 | DOI Listing |
J Exp Clin Cancer Res
December 2024
Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
BMC Cancer
December 2024
Department of Data Science, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran.
Glioblastoma Multiforme (GBM), classified as a grade IV glioma by the World Health Organization (WHO), is a prevalent and notably aggressive form of brain tumor derived from glial cells. It stands as one of the most severe forms of primary brain cancer in humans. The median survival time of GBM patients is only 12-15 months, making it the most lethal type of brain tumor.
View Article and Find Full Text PDFInt J Emerg Med
December 2024
Faculty of Medicine, University of Kalamoon, Al_Nabk, Syria.
Introduction: Non-cancer deaths are now becoming a significant threat to the health of cancer patients. Death from stomach and duodenal ulcer is linked to cancer due to the side effects of treatment and its pathogenesis. However, guidelines for identifying cancer patients at the highest risk of death from stomach and duodenal ulcer remain unclear.
View Article and Find Full Text PDFGeroscience
December 2024
Department of Ecology, Evolution, and Marine Biology, Department of Molecular, Cellular, and Cell Biology, Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA.
Significant links between aging and DNA methylation are emerging from recent studies. On the one hand, DNA methylation undergoes changes with age, a process termed as epigenetic drift. On the other hand, DNA methylation serves as a readily accessible and accurate biomarker for aging.
View Article and Find Full Text PDFAnn Surg Oncol
December 2024
Cancer Prognostics and Health Outcomes Unit, Division of Urology, University of Montréal Health Center, Montréal, QC, Canada.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!