DNA damage response has been characterized as an important mediator of senescence phenotypes induced by activated oncogenes in normal human cells. Depletion of intracellular deoxyribonucleotide pools has been recently recognized as one of the major causes for DNA damage in these cells. Cells undergoing oncogene-induced senescence display decreased expression of several rate-limiting enzymes involved in the biosynthesis of deoxyribonucleotides, including thymidylate synthase (TS) and ribonucleotide reductase (RR). Individual depletion of these enzymes leads to premature senescence. Reciprocally, ectopic expression of TS and RR or addition of deoxyribonucleosides resulted in suppression of senescence phenotypes in normal or tumor cells caused by overexpression of activated HRAS or depletion of C-MYC, respectively. Therefore, in the current chapter, we will describe a methodology for the quantitative measurement of nucleotide pools in senescent cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5579839 | PMC |
http://dx.doi.org/10.1007/978-1-4939-6670-7_16 | DOI Listing |
Aesthetic Plast Surg
January 2025
Department of Body Contouring and Fat grafting Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 33 Badachu Road, Shijingshan District, 100144, Beijing, People's Republic of China.
Background: Superficial autologous fat grafting is widely used for facial rejuvenation and regenerative treatments, yet its retention rate remains unpredictable. Enhancing the concentration of adipose-derived stem cells (ASCs) has been shown to improve graft retention. Mechanical fat processing techniques can reduce fat granules size for superficial injection as well as elevate the concentration of ASCs.
View Article and Find Full Text PDFPLoS One
January 2025
VA Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America.
Hepatol Commun
November 2024
Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA.
Background: We previously identified that high-mobility group box-1 (HMGB1) is increased and undergoes post-translational modifications (PTMs) in response to alcohol consumption. Here, we hypothesized that specific PTMs, occurring mostly in hepatocytes and myeloid cells, could contribute to the pathogenesis of alcohol-associated liver disease (AALD).
Methods: We used the Lieber-DeCarli (LD) model of early alcohol-induced liver injury, combined with engineered viral vectors and genetic approaches to regulate the expression of HMGB1, its PTMs (reduced [H], oxidized [O], acetylated [Ac], both [O + Ac]), and its receptors (RAGE, TLR4) in a cell-specific manner (hepatocytes and/or myeloid cells).
Prev Nutr Food Sci
December 2024
Aging and Metabolism Research Group, Food Functionality Research, Korea Food Research Institute, Wanju 55365, Korea.
Vascular smooth muscle cells (VSMCs) undergo metabolic pathway transitions, including aerobic glycolysis, fatty acid oxidation, and amino acid metabolism, which are important for their function. Metabolic dysfunction in VSMCs can lead to age-related vascular diseases. -GlcNAcylation, a nutrient-dependent posttranslational modification linked specifically to glucose metabolism, plays an important role in this context.
View Article and Find Full Text PDFPsoriasis (Auckl)
December 2024
The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan, People's Republic of China.
Psoriasis is a chronic inflammatory disease with a complex pathogenesis. Hyperplasia of glycolytic-dependent epidermal keratinocytes (KCs) is a new hallmark of psoriasis pathogenesis. Meanwhile, immune cells undergo metabolic reprogramming similar to KCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!