. Parvovirus B19 (B19V) is a common finding in endomyocardial biopsy specimens from myocarditis and dilated cardiomyopathy patients. However, current understanding of how B19V is contributing to cardiac damage is rather limited due to the lack of appropriate mice models. In this work we demonstrate that immunization of BALB/c mice with the major immunogenic determinant of B19V located in the unique sequence of capsid protein VP1 (VP1u) is an adequate model to study B19V associated heart damage. . We immunized mice in the experimental group with recombinant VP1u; immunization with cardiac myosin derived peptide served as a positive reference and phosphate buffered saline served as negative control. Cardiac function and dimensions were followed echocardiographically 69 days after immunization. Progressive dilatation of left ventricle and decline of ejection fraction were observed in VP1u- and myosin-immunized mice. Histologically, severe cardiac fibrosis and accumulation of heart failure cells in lungs were observed 69 days after immunization. Transcriptomic profiling revealed ongoing cardiac remodeling and immune process in VP1u- and myosin-immunized mice. . Immunization of BALB/c mice with VP1u induces dilated cardiomyopathy in BALB/c mice and it could be used as a model to study clinically relevant B19V associated cardiac damage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5080459PMC
http://dx.doi.org/10.1155/2016/1627184DOI Listing

Publication Analysis

Top Keywords

dilated cardiomyopathy
12
balb/c mice
12
parvovirus b19
8
cardiac damage
8
immunization balb/c
8
model study
8
b19v associated
8
days immunization
8
vp1u- myosin-immunized
8
myosin-immunized mice
8

Similar Publications

Nondilated left ventricular cardiomyopathy (NDLVC) is a newly defined category of cardiomyopathy. We sought to evaluate and compare the phenotype of NDLVC with DCM using cardiac magnetic resonance (CMR) imaging and to investigate the prognostic significance of these conditions. One hundred and fifty patients suspected of having cardiomyopathy referred for CMR were recruited.

View Article and Find Full Text PDF

Background: Cardiomyopathies are an important cause of heart failure in Africa yet there are limited data on etiology and clinical phenotypes.

Objectives: The IMHOTEP (African Cardiomyopathy and Myocarditis Registry Program) was designed to systematically collect data on individuals diagnosed with cardiomyopathy living in Africa.

Methods: In this multicenter pilot study, patients (age ≥13 years) were eligible for inclusion if they had a diagnosis of cardiomyopathy or myocarditis.

View Article and Find Full Text PDF

Clinical and imaging spectrum of non-congenital dominant ACTN2 myopathy.

J Neurol

January 2025

Department of Neurology and Neurosciences, Donostia University Hospital, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain.

Background: Alpha-actinin-2, a protein with high expression in cardiac and skeletal muscle, is located in the Z-disc and plays a key role in sarcomere stability. Mutations in ACTN2 have been associated with both hypertrophic and dilated cardiomyopathy and, more recently, with skeletal myopathy.

Methods: Genetic, clinical, and muscle imaging data were collected from 37 patients with an autosomal dominant ACTN2 myopathy belonging to 11 families from Spain and Belgium.

View Article and Find Full Text PDF

The Role of RyR2 Mutations in Congenital Heart Diseases: Insights Into Cardiac Electrophysiological Mechanisms.

J Cardiovasc Electrophysiol

January 2025

Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.

Ryanodine receptor 2 (RyR2) protein, a calcium ion release channel in the sarcoplasmic reticulum (SR) of myocardial cells, plays a crucial role in regulating cardiac systolic and diastolic functions. Mutations in RyR2 and its dysfunction are implicated in various congenital heart diseases (CHDs). Studies have shown that mutations in the RYR2 gene, which encodes the RyR2 protein, are linked to several cardiac arrhythmias, including catecholaminergic polymorphic ventricular tachycardia (CPVT), long QT syndrome (LQTS), calcium release deficiency syndrome (CRDS), and atrial fibrillation (AF).

View Article and Find Full Text PDF

The heart employs a specialized ribosome in its muscle cells to translate genetic information into proteins, a fundamental adaptation with an elusive physiological role. Its significance is underscored by the discovery of neonatal patients suffering from often fatal heart failure caused by rare compound heterozygous variants in RPL3L, a muscle-specific ribosomal protein that replaces the ubiquitous RPL3 in cardiac ribosomes. -linked heart failure represents the only known human disease arising from mutations in tissue-specific ribosomes, yet the underlying pathogenetic mechanisms remain poorly understood despite an increasing number of reported cases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!