is suggested as an effective strategy to enhance the figure of merit of heavy-band thermoelectric materials. Heavy-band FeNbSb half-Heusler system with intrinsically low carrier mean free path is demonstrated as a paradigm. An enhanced of 1.34 is obtained at 1150 K for the FeNbTiSb compound with intentionally designed hierarchical scattering centers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5069587PMC
http://dx.doi.org/10.1002/advs.201600035DOI Listing

Publication Analysis

Top Keywords

figure merit
8
merit heavy-band
8
heavy-band thermoelectric
8
thermoelectric materials
8
enhancing figure
4
materials hierarchical
4
hierarchical phonon
4
phonon scattering
4
scattering suggested
4
suggested effective
4

Similar Publications

Terahertz (THz) spectroscopy, an advanced label-free sensing method, offers significant potential for biomolecular detection and quantitative analysis in biological samples. Although broadband fingerprint enhancement compensates for limitations in detection capability and sensitivity, the complex optical path design in operation restricts its broader adoption. This paper proposes a multi-degree-of-freedom stretchable metasurface that supports magnetic dipole resonance to enhance the broadband THz fingerprint detection of trace analytes.

View Article and Find Full Text PDF

Optimization of an analytical method based on the use of zwitterionic- phosphorylcholine -HILIC column for the determination of multiple polar emerging contaminants in reclaimed water.

J Chromatogr A

December 2024

Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy; LASIRE, University of Lille, Cité Scientifique, Villeneuve-d'Ascq, 59650, France.

The aim of this study was to optimize a Liquid Chromatography Mass Spectrometry (LC-MS) method using a zwitterionic phosphorylcholine HILIC column for the determination of several Persistent and Mobile Organic Contaminants (PMOC) in wastewater samples. An experimental design approach was implemented to both better understand the retention mechanisms of several polar compounds and to find the optimal operating conditions for their detection and quantification. Eleven PMOCs, with logD ranging from -5.

View Article and Find Full Text PDF

With advancements in photonic technologies, photonic crystal fibers (PCFs) have become crucial components in developing highly sensitive and efficient biosensors. This paper presents an optimized bowtie-shaped PCF biosensor that leverages surface plasmon resonance (SPR) phenomena for enhanced refractive index (RI) sensing. The proposed design uses an external sensing mechanism to effectively characterize performance across an RI range of 1.

View Article and Find Full Text PDF

Matching P- and N-type Organic Electrochemical Transistor Performance Enables a Record High-gain Complementary Inverter.

Adv Mater

December 2024

State Key Laboratory of Polymer Physics and Chemistry & Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.

The charge transport of channel materials in n-type organic electrochemical transistors (OECTs) is greatly limited by the adverse effects of electrochemical doping, posing a long-standing puzzle for the community. Herein, an n-type conjugated polymer with glycolated side chains (n-PT3) is introduced. This polymer can adapt to electrochemical doping and create more organized nanostructures, mitigating the adverse effects of electrochemical doping.

View Article and Find Full Text PDF

Context: Vanadium hydride is of significant interest because of its potential applications in thermoelectric materials and hydrogen storage technologies. Understanding its structural, electronic, and thermoelectric properties is crucial for optimizing its performance in these applications. This study investigates these properties via density functional theory (DFT), revealing key insights into its stability and efficiency as a thermoelectric material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!