Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study links changes in the tobacco endogenous metal-homeostasis network caused by transgene expression with engineering of novel features. It also provides insight into the concentration-dependent mutual interactions between Zn and Cd, leading to differences in the metal partitioning between wild-type and transgenic plants. In tobacco, expression of the export protein AtHMA4 modified Zn/Cd root/shoot distribution, but the pattern depended on their concentrations in the medium. To address this phenomenon, the expression of genes identified by suppression subtractive hybridization and the Zn/Cd accumulation pattern were examined upon exposure to six variants of low/high Zn and Cd concentrations. Five tobacco metal-homeostasis genes were identified: NtZIP2, NtZIP4, NtIRT1-like, NtNAS, and NtVTL. In the wild type, their expression depended on combinations of low/high Zn and Cd concentrations; co-ordinated responses of NtZIP1, NtZIP2, and NtVTL were shown in medium containing 4 µM Cd, and at 0.5 µM versus 10 µM Zn. In transgenics, qualitative changes detected for NtZIP1, NtZIP4, NtIRT1-like, and NtVTL are considered crucial for modification of Zn/Cd supply-dependent Zn/Cd root/shoot distribution. Notwithstanding, NtVTL was the most responsive gene in wild-type and transgenic plants under all concentrations of Zn and Cd tested; thus it is a candidate gene for the regulation of metal cross-homeostasis processes involved in engineering new metal-related traits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5100030 | PMC |
http://dx.doi.org/10.1093/jxb/erw389 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!