Reducing hydrogen sulfide concentration in eutrophic marine sediments is crucial to maintaining healthy aquatic ecosystems. Managing fly ash, 750 million tons of which is generated annually throughout the world, is another serious environmental problem. In this study, we develop an approach that addresses both these issues by mixing coal fly ash from coal-fired power plants with blast furnace cement to remediate eutrophic sediments. The purpose of this study is to optimize the mixing ratio of coal fly ash and blast furnace cement to improve the rate of hydrogen sulfide removal based on scientific evidence obtained by removal experiments and XAFS, XRD, BET, and SEM images. In the case of 10 mg-S L of hydrogen sulfide, the highest removal rate of hydrogen sulfide was observed for 87 wt% of coal fly ash due to decreased competition of adsorption between sulfide and hydroxyl ions. Whereas regarding 100 mg-S L, the hydrogen sulfide removal rate was the highest for 95 wt% of coal fly ash. However, for both concentrations, the removal rate obtained by 87 wt% and 95 wt% were statistically insignificant. The crushing strength of the mixture was over 1.2 N mm when the coal fly ash mixing ratio was less than 95 wt%. Consequently, the mixing ratio of coal fly ash was optimized at 87 wt% in terms of achieving both high hydrogen sulfide removal rate and sufficient crushing strength.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2016.10.070DOI Listing

Publication Analysis

Top Keywords

fly ash
32
coal fly
28
hydrogen sulfide
28
removal rate
16
ratio coal
12
blast furnace
12
furnace cement
12
mixing ratio
12
sulfide removal
12
fly
8

Similar Publications

The resource utilization of municipal solid waste incineration fly ash (MSWI FA) has been widely concerned at present. The chlorine removal from MSWI FA is of great significance for controlling environmental risk and improving materials properties in the process of its resource utilization. This work specifically proposes to divide the chlorine in MSWI FA into inorganic chloride and organic chloride.

View Article and Find Full Text PDF

Outdoor exposure of a heavy metal doped concrete -Measuring and modelling of substance release.

J Environ Manage

January 2025

Institute of Building Materials Research, RWTH Aachen University, Schinkelstraße 3, 52062, Aachen, Germany. Electronic address:

Many construction products are in contact with, e.g., rain and seepage water during their service life.

View Article and Find Full Text PDF

To improve the utilization rates of soda residue (SR) and fly ash (FA), reduce environmental pollution, and enhance the mechanical properties of marine clay (MC), this study proposes mixing SR, FA, and MC with cement and /or lime to prepare soda residue-fly ash stabilized soil (SRFSS). Using an orthogonal design for the proportions, the study analyzes the compaction performance, unconfined compressive strength (UCS), and shear strength of SRFSS. The influence of various factors on the mechanical properties of SRFSS was investigated through range and variance analyses.

View Article and Find Full Text PDF

Research on the Mechanical Properties of EPS Lightweight Soil Mixed with Fly Ash.

Polymers (Basel)

December 2024

School of Civil Engineering, Architectural and Environment, Hubei University of Technology, Wuhan 430068, China.

Expanded polystyrene (EPS) bead-lightweight soil composites are a new type of artificial geotechnical material with low density and high strength. We applied EPS bead-lightweight soil in this project, replacing partial cement with fly ash to reduce construction costs. EPS beads were used as a lightweight material and cement and fly ash as curing agents in the raw soil were used to make EPS lightweight soil mixed with fly ash.

View Article and Find Full Text PDF

As is widely accepted, cumulative strain and improvement mechanisms of stabilized soil are critical factors for the long-term reliable operation of expressways and high-speed railways. Based on relevant research findings, xanthan gum biopolymer is regarded as a green and environmentally friendly curing agent in comparison to traditional stabilizers, such as cement, lime, and fly ash. However, little attention has been devoted to the cumulative strain and improvement mechanisms of soil reinforced by xanthan gum biopolymer under traffic loading.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!