Honeycomb structures have been attracting attention from researchers mainly for their high strength-to-weight ratio. As one type of structure, honeycomb monoliths having microscopically dimensioned channels have recently gained many achievements since their emergence. Inspired by the microhoneycomb structure that occurs in natural tree xylems, we have been focusing on the assembly of such a structure by using the major component in tree xylem, cellulose, as the starting material. Through the path that finally led us to the successful reconstruction of tree xylems by the unidirectional freeze-drying (UDF) approach, we verified the function of cellulose nanofibers, toward forming xylem-like monoliths (XMs). The strong tendency of cellulose nanofibers to form XMs through the UDF approach was extensively confirmed with surface grafting or a combination of a variety of second components (or even a third component). The resulting composite XMs were thus imparted with extra properties, which extends the versatility of this kind of material. Particularly, we demonstrated in this paper that XMs containing reduced graphene oxide (denoted as XM/rGO) could be used as strain sensors, taking advantage of their penetrating microchannels and the bulk elasticity property. Our methodology is flexible in its processing and could be utilized to prepare various functional composite XMs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.6b05808 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!