Multiplex immunoassays are rapidly increasing in popularity due to the offered advantages of increased throughput and decreased sample volume requirements. However, a major weakness inherent to multiplex enzyme-linked immunosorbent assays (ELISA) is generation of false signals through reagent-driven cross-talk. Typically, multiplex platforms necessitate bath application of antibody cocktails, increasing probability of nonspecific antibody binding, especially when multiplexing large numbers of analytes. Aqueous two-phase systems (ATPS) exploiting the phase-separating polymers poly(ethylene) glycol (PEG) and dextran (DEX) have been used to compartmentalize antibodies and prevent cross-talk in multliplex, plate-based ELISA. However, the resulting protocol is tedious and lengthy, and requires too many user steps to be practical for widespread use. Here, we report an improved, user-friendly, cross-talk-free multiplex ELISA method in which dehydrated arrays of colocalized capture and detection antibodies in DEX are prepared on multiwell plates. Addition of a PEG-based sample buffer rehydrates antibody/DEX droplets for analysis. In this report, we demonstrate rehydrated ATPS components for multiplex ELISA retain the ability to compartmentalize antibodies and prevent cross-talk, while analytes in sample buffer partition into rehydrated DEX droplets for analysis. Utility of this method was demonstrated through successful quantitative analysis of five inflammatory cytokines in lipopolysaccharide-stimulated ThP-1 cell culture supernatant.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.6b02960DOI Listing

Publication Analysis

Top Keywords

aqueous two-phase
8
multiplex immunoassays
8
compartmentalize antibodies
8
antibodies prevent
8
prevent cross-talk
8
multiplex elisa
8
sample buffer
8
droplets analysis
8
multiplex
6
two-phase system
4

Similar Publications

Efforts to reduce the impact of chemical processes on the environment are leading to a shift to enzymatic alternatives, with laccases standing out for their versatile substrate oxidation capabilities. This study addresses the improvement of biocatalytic reactions by deep eutectic solvents (DES), in particular DES-based aqueous two-phase systems (ATPS) for the extraction of biomolecules. Continuous laccase extraction from crude samples was achieved using a DES-based ATPS, which was first optimized in a batch extractor and later intensified in a microextractor.

View Article and Find Full Text PDF

The separation of large polar constituents presents a substantial challenge in natural product research when employing column chromatography techniques, as the process is both complex and time-consuming. In this study, an acetonitrile/tetrahydrofuran/di-(2-ethylhexyl) phosphoric acid/aqueous saturated sodium chloride solvent system was developed and utilized for the countercurrent chromatography of polar constituents from L. seeds.

View Article and Find Full Text PDF

The design of functional artificial cells involves compartmentalizing biochemical processes to mimic cellular organization. To emulate the complex chemical systems in biological cells, it is necessary to incorporate an increasing number of cellular functions into single compartments. Artificial organelles that spatially segregate reactions inside artificial cells will be beneficial in this context by rectifying biochemical pathways.

View Article and Find Full Text PDF

Pleurotus ostreatus is a nutrient-dense edible fungus renowned for its delicate texture, appealing flavor, and numerous potential health benefits. Simultaneous extraction within the framework of food resource processing facilitates the concurrent isolation and analysis of multiple target compounds. In this study, an ethanol/salt aqueous two-phase system (ATPS) was employed to extract polysaccharides (PS) and proteins from P.

View Article and Find Full Text PDF

Soluplus Stabilized Amorphous Dispersions for Enhanced Oral Absorption of Felodipine.

Curr Drug Deliv

January 2025

Department of Biopharmaceutical, Lishui University, 1 Xueyuan Road, Lishui, 323000, China.

Background: Overcoming the poor aqueous solubility of small-molecule drugs is a major challenge in developing clinical pharmaceuticals. Felodipine (FLDP), an L-type calcium calcium channel blocker, is a poorly water-soluble drug.

Objectives: The study aimed to explore the potential applications of polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol (Soluplus) stabilized amorphous dispersions for augmenting the oral delivery of poorly water-soluble drugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!