Evidence has been building that the pathologic drive for development of osteoarthritis (OA) involves more than simple mechanical "wear and tear." Inflammatory mechanisms play an important role in the tissue response to joint injury, and are involved in development of post-traumatic OA. Inflammation also appears integral to the progression of OA, whether post-traumatic or spontaneous, contributing to the evolution of joint tissue degradation and remodeling as well as joint pain. Both patient-based studies and in vivo models of disease have shed light on a number of inflammatory pathways and mediators that impact various aspects of this disease, both structurally and symptomatically. Recent work in this field has implicated inflammatory chemokines in osteoarthritis pathogenesis. Expression of multiple chemokines and their receptors is modulated during disease in both patients and animal models. Although best known for their effects on leukocyte migration and trafficking within the immune system, chemokines can have a wide variety of effects on both motile and non-motile cell types, impacting proliferation, differentiation, and activation of cellular responses. Their role in OA models has also demonstrated diverse effects on disease that exemplify their wide-ranging effects. Understanding how these important mediators of inflammation impact joint disease, and whether they can be targeted therapeutically, is actively being investigated by many groups in this field. This narrative review focuses on evidence published within the last 5 years highlighting chemokine-mediated pathways with mechanistic involvement in osteoarthritis and joint tissue repair. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:735-739, 2017.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5912941 | PMC |
http://dx.doi.org/10.1002/jor.23471 | DOI Listing |
Front Immunol
January 2025
Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
Rationale: Acute kidney injury (AKI) is a clinical syndrome associated with a multitude of conditions. Although renal replacement therapy (RRT) remains the cornerstone of treatment for advanced AKI, its implementation can potentially pose risks and may not be readily accessible across all healthcare settings and regions. Elevated lactate levels are implicated in sepsis-induced AKI; however, it remains unclear whether increased lactate directly induces AKI or elucidates the underlying mechanisms.
View Article and Find Full Text PDFFront Immunol
January 2025
BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia.
Despite enormous progress, advanced cancers are still one of the most serious medical problems in current society. Although various agents and therapeutic strategies with anticancer activity are known and used, they often fail to achieve satisfactory long-term patient outcomes and survival. Recently, immunotherapy has shown success in patients by harnessing important interactions between the immune system and cancer.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Immune dysfunction is one of the hallmarks of cancer and plays critical roles in immunotherapy resistance, but there is no serum biomarker that can be used to evaluate immune-dysfunction status of cancer patients. Here, we identified subtype-specific human endogenous retrovirus K102 envelope (HERV-K102-Env) with immunosuppressive activity in circulating blood as a novel serum immunosuppressive biomarker of cancer. We first generated monoclonal antibodies against K102-Env with high sensitivity and specificity, and we developed an ELISA assay to detect serum K102-Env.
View Article and Find Full Text PDFFront Immunol
January 2025
Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
Today, cancer has become one of the leading global tragedies. It occurs when a small number of cells in the body mutate, causing some of them to evade the body's immune system and proliferate uncontrollably. Even more irritating is the fact that patients with cancers frequently relapse after conventional chemotherapy and radiotherapy, leading to additional suffering.
View Article and Find Full Text PDFFront Immunol
January 2025
National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.
Background: Hepatocellular carcinoma (HCC) is one of the most prevalent causes of cancer-related morbidity and mortality worldwide. Late-stage detection and the complex molecular mechanisms driving tumor progression contribute significantly to its poor prognosis. Dysregulated R-loops, three-stranded nucleic acid structures associated with genome instability, play a key role in the malignant characteristics of various tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!