Acute myeloid leukemia (AML) can display de novo or acquired resistance to cytosine arabinoside (Ara-C), a primary component of induction chemotherapy. To identify genes capable of independently imposing Ara-C resistance, we applied a genome-wide CRISPR library to human U937 cells and exposed to them to Ara-C. Interestingly, all drug resistant clones contained guide RNAs for DCK. To avoid DCK gene modification, gRNA resistant DCK cDNA was created by the introduction of silent mutations. The CRISPR screening was repeated using the gRNA resistant DCK, and loss of SLC29A was identified as also being capable of conveying Ara-C drug resistance. To determine if loss of Dck results in increased sensitivity to other drugs, we conducted a screen of 446 FDA approved drugs using two Dck-defective BXH-2 derived murine AML cell lines and their Ara-C sensitive parental lines. Both cell lines showed an increase in sensitivity to prednisolone. Guide RNA resistant cDNA rescue was a legitimate strategy and multiple DCK or SLC29A deficient human cell clones were established with one clone becoming prednisolone sensitive. Dck-defective leukemic cells may become prednisolone sensitive indicating prednisolone may be an effective adjuvant therapy in some cases of DCK-negative AML.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5093682PMC
http://dx.doi.org/10.1038/srep36199DOI Listing

Publication Analysis

Top Keywords

resistant dck
12
genome-wide crispr
8
crispr library
8
ara-c drug
8
drug resistance
8
grna resistant
8
cell lines
8
prednisolone sensitive
8
dck
7
ara-c
6

Similar Publications

Targeting splicing for hematological malignancies therapy.

BMC Genomics

November 2024

Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, Lublin, 20-093, Poland.

Alterations in splicing patterns of leukemic cells have a functional impact and influence most cellular processes since aberrantly spliced isoforms can provide a proliferative advantage, enable to evade apoptosis, induce metabolic reprogramming, change cell signaling and antitumor immune response, or develop drug resistance. In this Review, we first characterize the general mechanism of mRNA processing regulation with a focus on the role of splicing factors, which are commonly mutated in blood neoplasms. Next, we provide a comprehensive summary on the current understanding of alternative splicing events, which confer resistance to targeted treatment strategies and immunotherapy.

View Article and Find Full Text PDF

Background: The Myositis Interstitial Lung Disease Nintedanib Trial (MINT) is a hybrid trial, which is enrolling patients both at local sites and remotely via a decentralised site. The trial will investigate the efficacy and safety of nintedanib in patients with progressive myositis-associated interstitial lung disease (MA-ILD).

Methods/design: MINT is an exploratory, prospective randomised placebo-controlled trial.

View Article and Find Full Text PDF

Antineoplastic Activity of Sodium Caseinate in a Cytarabine-Resistant Mouse Acute Myeloid Leukemia Cell Line.

Nutrients

September 2024

Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico.

Background: Acute myeloid leukemia (AML) is a hematological neoplasm of rapid and progressive onset, and is the most common form of leukemia in adults. Chemoresistance to conventional treatments such as cytarabine (Ara-C) and daunorubicin is a main cause of relapse, recurrence, metastasis, and high mortality in AML patients. It is known that sodium caseinate (SC), a salt derived from casein, a milk protein, inhibits growth and induces apoptosis in acute myeloid leukemia cells but not in normal hematopoietic cells.

View Article and Find Full Text PDF

The PPP2R1A cancer hotspot mutant p.R183W increases clofarabine resistance in uterine serous carcinoma cells by a gain-of-function mechanism.

Cell Oncol (Dordr)

October 2024

Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Gasthuisberg O&N1, Herestraat 49, PO-box 901, Leuven, B-3000, Belgium.

Purpose: Uterine serous carcinoma (USC) is generally associated with poor prognosis due to a high recurrence rate and frequent treatment resistance; hence, there is a need for improved therapeutic strategies. Molecular analysis of USC identified several molecular markers, useful to improve current treatments or identify new druggable targets. PPP2R1A, encoding the Aα subunit of the tumor suppressive Ser/Thr phosphatase PP2A, is mutated in up to 40% of USCs.

View Article and Find Full Text PDF

In vitro evolution and whole genome analysis to study chemotherapy drug resistance in haploid human cells.

Sci Rep

June 2024

Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, Gilman Dr., La Jolla, CA, 92093, USA.

In vitro evolution and whole genome analysis has proven to be a powerful method for studying the mechanism of action of small molecules in many haploid microbes but has generally not been applied to human cell lines in part because their diploid state complicates the identification of variants that confer drug resistance. To determine if haploid human cells could be used in MOA studies, we evolved resistance to five different anticancer drugs (doxorubicin, gemcitabine, etoposide, topotecan, and paclitaxel) using a near-haploid cell line (HAP1) and then analyzed the genomes of the drug resistant clones, developing a bioinformatic pipeline that involved filtering for high frequency alleles predicted to change protein sequence, or alleles which appeared in the same gene for multiple independent selections with the same compound. Applying the filter to sequences from 28 drug resistant clones identified a set of 21 genes which was strongly enriched for known resistance genes or known drug targets (TOP1, TOP2A, DCK, WDR33, SLCO3A1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!