Epac1 interacts with importin β1 and controls neurite outgrowth independently of cAMP and Rap1.

Sci Rep

Laboratory of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

Published: November 2016

Exchange protein directly activated by cAMP-1 (Epac1) is a cAMP sensor that regulates multiple cellular functions including cellular migration, proliferation and differentiation. Classically, Epac1 is thought to exert its effects through binding of cAMP leading to a conformational change in Epac1 and its accumulation at the plasma membrane (PM) where it activates Rap1. In search for regulators of Epac1 activity, we show here that importin β1 (impβ1) is an Epac1 binding partner that prevents PM accumulation of Epac1. We demonstrate that in the absence of impβ1, endogenous as well as overexpressed Epac1 accumulate at the PM. Moreover, agonist-induced PM translocation of Epac1 leads to dissociation of Epac1 from impβ1. Localization of Epac1 at the PM in the absence of impβ1, requires residue R82 in its DEP domain. Notably, the PM accumulation of Epac1 in the absence of impβ1 does not require binding of cAMP to Epac1 and does not result in Rap1 activation. Functionally, PM accumulation of Epac1, an Epac1 mutant deficient in cAMP binding, or an Epac1 mutant tethered to the PM, is sufficient to inhibit neurite outgrowth. In conclusion, we uncover a cAMP-independent function of Epac1 at the PM and demonstrate that impβ1 controls subcellular localization of Epac1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5093460PMC
http://dx.doi.org/10.1038/srep36370DOI Listing

Publication Analysis

Top Keywords

epac1
18
accumulation epac1
12
absence impβ1
12
importin β1
8
neurite outgrowth
8
binding camp
8
epac1 demonstrate
8
localization epac1
8
epac1 absence
8
epac1 mutant
8

Similar Publications

Fluorescence resonance energy transfer (FRET)-based biosensors are powerful tools for studying second messengers with high temporal and spatial resolution. FRET is commonly detected by ratio imaging, but fluorescence lifetime imaging microscopy (FLIM), which measures the donor fluorophore's lifetime, offers a robust and more quantitative alternative. We have introduced and optimized four generations of FRET sensors for cAMP, based on the effector molecule Epac1, including variants for either ratio imaging or FLIM detection.

View Article and Find Full Text PDF

Ginsenoside Ro prevents endothelial injury via promoting Epac1/AMPK- mediated mitochondria protection in early diabetic retinopathy.

Pharmacol Res

January 2025

Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Diabetes Research Center, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, China. Electronic address:

Diabetic retinopathy (DR) is a blinding complication of microangiopathy. First-line therapeutic drugs are all focused on late-stage DR and have several side effects, which could not meet clinical needs. The plant-derived ginsenoside Ro (Ro) has a variety of effective anti-inflammatory, immune-regulating, and cardiovascular protective effects, but its microvascular protective effects are rarely studied.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to evaluate how a specific extract protects against mitochondrial damage in mice with atherosclerosis, focusing on its chemical composition and efficacy using advanced analytical techniques.
  • Results showed that the extract significantly boosted heart and mesenteric microcirculation, lowered harmful lipid levels, and enhanced ATP levels, indicating improved mitochondrial function and lipid metabolism.
  • The mechanism behind these effects involves the PGC-1α/Sirt3/Epac1 signaling pathway, with the extract increasing beneficial protein markers while reducing those associated with cell death.
View Article and Find Full Text PDF

Estrogen is a steroid hormone that plays a key role in regulating many physiological processes, such as follicle activation and development and oocyte maturation in mammals. Ca is crucial in oogenesis, oocyte maturation, ovulation, and fertilization. However, the mechanism by which estrogen regulates Ca during oocyte maturation in mice has not been reported.

View Article and Find Full Text PDF

Epac1 activation optimizes cellular functions of BMSCs and promotes wound healing via Erk/ACLY/PGC-1α signaling pathway.

Eur J Pharmacol

December 2024

Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, China. Electronic address:

Restrained cell function of relocated bone marrow mesenchymal stem cells (BMSCs) largely impedes the clinical benefits of BMSCs-mediated tissue repair. Exchange protein directly activated by cAMP (Epac), a novel protein discovered in cAMP signaling pathway, has a potential role in regulating cell migration and proliferation by triggering the downstream Rap signaling. However, whether and how Epac may exert effects on BMSCs' bioactivity have less been investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!