Low-Voltage Continuous Electrospinning Patterning.

ACS Appl Mater Interfaces

Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, United Kingdom.

Published: November 2016

Electrospinning is a versatile technique for the construction of microfibrous and nanofibrous structures with considerable potential in applications ranging from textile manufacturing to tissue engineering scaffolds. In the simplest form, electrospinning uses a high voltage of tens of thousands volts to draw out ultrafine polymer fibers over a large distance. However, the high voltage limits the flexible combination of material selection, deposition substrate, and control of patterns. Prior studies show that by performing electrospinning with a well-defined "near-field" condition, the operation voltage can be decreased to the kilovolt range, and further enable more precise patterning of fibril structures on a planar surface. In this work, by using solution dependent "initiators", we demonstrate a further lowering of voltage with an ultralow voltage continuous electrospinning patterning (LEP) technique, which reduces the applied voltage threshold to as low as 50 V, simultaneously permitting direct fiber patterning. The versatility of LEP is shown using a wide range of combination of polymer and solvent systems for thermoplastics and biopolymers. Novel functionalities are also incorporated when a low voltage mode is used in place of a high voltage mode, such as direct printing of living bacteria; the construction of suspended single fibers and membrane networks. The LEP technique reported here should open up new avenues in the patterning of bioelements and free-form nano- to microscale fibrous structures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b07797DOI Listing

Publication Analysis

Top Keywords

high voltage
12
continuous electrospinning
8
electrospinning patterning
8
voltage
8
lep technique
8
voltage mode
8
electrospinning
5
patterning
5
low-voltage continuous
4
patterning electrospinning
4

Similar Publications

Challenges and Opportunities for Rechargeable Aqueous Sn Metal Batteries.

Adv Mater

March 2025

Pritzker School of Molecular Engineering, The University of Chicago, 5801 South Ellis Avenue, Chicago, IL, 60637, USA.

Rechargeable aqueous batteries based on metallic anodes hold tremendous potential of high energy density enabled by the combination of relatively low working potential and large capacity while retaining the intrinsic safety nature and economical value of aqueous systems; However, the realization of these promised advantages relies on the identification of an ideal metal anode chemistry with all these merits. In this review, the emerging Sn metal anode chemistry is examined as such an anode candidate in both acidic and alkaline media, where the inertness of Sn toward hydrogen evolution, flat low voltage profile, and low polarization make it a unique metal anode for aqueous batteries. From a panoramic viewpoint, the key challenges and detrimental issues of Sn metal batteries are discussed, including dead Sn formation, self-discharge, and electrolyte degradation, as well as strategies for mitigating these issues by constructing robust Sn anodes.

View Article and Find Full Text PDF

Recent Progress in Oxygen Reduction Reaction Toward Hydrogen Peroxide Electrosynthesis and Cooperative Coupling of Anodic Reactions.

Adv Mater

March 2025

Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China.

Electrosynthesis of hydrogen peroxide (HO) via two-electron oxygen reduction reaction (2e ORR) is a promising alternative to the anthraquinone oxidation process. To improve the overall energy efficiency and economic viability of this catalytic process, one pathway is to develop advanced catalysts to decrease the overpotential at the cathode, and the other is to couple 2e ORR with certain anodic reactions to decrease the full cell voltage while producing valuable chemicals on both electrodes. The catalytic performance of a 2e ORR catalyst depends not only on the material itself but also on the environmental factors.

View Article and Find Full Text PDF

In this study, zinc telluride (ZnTe) films were grown on quartz substrates at room temperature, 300 °C, 400 °C, 500 °C, and 600 °C using RF sputtering. The thickness of the films has been found to decrease from 940 nm at room temperature to 200 nm at 600 °C with increasing substrate temperature. The structural investigation using grazing incidence angle X-ray diffraction revealed that films deposited at room temperature are amorphous; those deposited at other substrate temperatures are polycrystalline with a cubic zincblende structure and a preferred orientation along the [111] direction.

View Article and Find Full Text PDF

Highly efficient and durable anode catalyst layer constructed with deformable hollow IrOx nanospheres in low-iridium PEM water electrolyzer.

Angew Chem Int Ed Engl

March 2025

Jilin University, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, 2699 Qianjin Street, 130012, Changchun, CHINA.

Reducing iridium packing density (gIr cm-3 electrode) represents a critical pathway to lower geometric Ir loading in proton exchange membrane water electrolyzers (PEMWEs), yet conventional approaches often cause performance issues of anode catalyst layer due to decreased structural stability and limited electron/mass transport efficiency. Here we present deformable hollow IrOx nanospheres (dh-IrOx) as a structural-engineered catalyst architecture that achieves an ultralow Ir packing density (20% of conventional IrO2 electrodes) while maintaining high catalytic activity and durability at reduced Ir loadings. Scalable synthesis of dh-IrOx via a hard-template method-featuring precise SiO2 nanosphere templating and conformal Ir(OH)3 coating-enables batch production of tens of grams.

View Article and Find Full Text PDF

Fullerene-Passivated Methylammonium Lead Iodide Perovskite Absorber for High-Performance Self-Powered Photodetectors with Ultrafast Response and Broadband Detectivity.

Molecules

March 2025

Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 446-701, Republic of Korea.

We herein report the enhanced electrical properties of self-powered perovskite-based photodetectors with high sensitivity and responsivity by applying the surface passivation strategy using C (fullerene) as a surface passivating agent. The perovskite (CHNHPbI) thin film passivated with fullerene achieves a highly uniform and compact surface, showing reduced leakage current and higher photon-to-current conversion capability. As a result, the improved film quality of the perovskite layer allows excellent photon-detecting properties, including high values of external quantum efficiency (>95%), responsivity (>5 A W), and specific detectivity (10 Jones) at zero bias voltage, which surpasses those of the pristine perovskite-based device.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!