Transcription factor EBF1 (early B-cell factor 1) regulates early B-cell differentiation by poising or activating lineage-specific genes and repressing genes associated with alternative cell fates. To identify proteins that regulate the diverse functions of EBF1, we used SILAC (stable isotope labeling by amino acids in cell culture)-based mass spectrometry of proteins associated with endogenous EBF1 in pro-B cells. This analysis identified most components of the multifunctional CCR4-NOT complex, which regulates transcription and mRNA degradation. CNOT3 interacts with EBF1, and we identified histidine 240 in EBF1 as a critical residue for this interaction. Complementation of Ebf1 progenitors with EBF1H240A revealed a partial block of pro-B-cell differentiation and altered expression of specific EBF1 target genes that show either reduced transcription or increased mRNA stability. Most deregulated EBF1 target genes show normal occupancy by EBF1H240A, but we also detected genes with altered occupancy, suggesting that the CCR4-NOT complex affects multiple activities of EBF1. Mice with conditional Cnot3 inactivation recapitulate the block of early B-cell differentiation, which we found to be associated with an impaired autoregulation of Ebf1 and reduced expression of pre-B-cell receptor components. Thus, the interaction of the CCR4-NOT complex with EBF1 diversifies the function of EBF1 in a context-dependent manner and may coordinate transcriptional and post-transcriptional gene regulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5110997 | PMC |
http://dx.doi.org/10.1101/gad.285452.116 | DOI Listing |
Int J Mol Sci
January 2025
Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy.
MicroRNA (miR)-126 is frequently downregulated in malignancies, including breast cancer (BC). Despite its tumor-suppressive role, the mechanisms underlying miR-126 deregulation in BC remain elusive. Through silencing experiments, we identified Early B Cell Factor 1 (EBF1), ETS Proto-Oncogene 2 (ETS2), and Krüppel-Like Factor 2 (KLF2) as pivotal regulators of miR-126 expression.
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China.
Background: Glioblastoma multiforme (GBM) is a highly aggressive brain tumor, characterized by its poor prognosis. Glycolipid metabolism is strongly associated with GBM development and malignant behavior. However, the precise functions of snoRNAs and ADARs in glycolipid metabolism within GBM cells remain elusive.
View Article and Find Full Text PDFCells
January 2025
Chongqing Academy of Animal Science, Chongqing 402460, China.
Porcine latissimus dorsi muscle (LDM) is a crucial source of pork products. Meat quality indicators, such as the proportion of muscle fibers and intramuscular fat (IMF) deposition, vary during the growth and development of pigs. Numerous studies have highlighted the heterogeneous nature of skeletal muscle, with phenotypic differences reflecting variations in cellular composition and transcriptional profiles.
View Article and Find Full Text PDFRes Sq
December 2024
Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
Ultra long-range genomic contacts, which emerge as prominent components of genome architecture, constitute a biochemical paradox. This is because regulatory DNA elements make selective and stable contacts with DNA sequences located megabases away, instead of interacting with proximal sequences occupied by the same exact transcription factors (TF). This is exemplified in olfactory sensory neurons (OSNs), where only a fraction of Lhx2/Ebf1/Ldb1-bound sites interact with each other, converging into highly selective multi-chromosomal enhancer hubs.
View Article and Find Full Text PDFBJOG
December 2024
Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
Objective: Endometriosis affects 10% of women worldwide and is linked to adverse pregnancy outcomes, including preterm birth. Recent epidemiological and genetic studies indicate that endometriosis may influence gestational duration and the likelihood of preterm birth. This study aimed to estimate the direct genetic causal effects of endometriosis on gestational duration and preterm birth using Mendelian randomisation (MR) analysis, leveraging genetic data from recent genome-wide association studies (GWASs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!