Chlorogenic acids are secondary metabolites in diverse plants. Some chlorogenic acids extracted from traditional medicinal plants are known for their healing properties, e.g., against viral infections. Also, green coffee beans are a rich source of chlorogenic acids, with 5--caffeoylquinic acid being the most abundant chlorogenic acid in coffee. We previously reported the synthesis of the regioisomers of lactones, bearing different substituents on the quinidic core. Here, 3,4--dicaffeoyl-1,5--quinide and three dimethoxycinnamoyl--quinides were investigated for antiviral activities against a panel of 14 human viruses. Whereas the dimethoxycinnamoyl--quinides did not show any antiviral potency in cytopathogenic effect reduction assays, 3,4--dicaffeoyl-1,5--quinide exerted mild antiviral activity against herpes simplex viruses, adenovirus, and influenza virus. Interestingly, when the compounds were evaluated against respiratory syncytial virus, a potent antiviral effect of 3,4--dicaffeoyl-1,5--quinide was observed against both subtypes of respiratory syncytial virus, with EC values in the submicromolar range. Time-of-addition experiments revealed that this compound acts on an intracellular post-entry replication step. Our data show that 3,4--dicaffeoyl-1,5--quinide is a relevant candidate for lead optimization and further mechanistic studies, and warrants clinical development as a potential anti-respiratory syncytial virus drug.

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-0042-119449DOI Listing

Publication Analysis

Top Keywords

chlorogenic acids
12
syncytial virus
12
coffee beans
8
respiratory syncytial
8
chlorogenic
5
chlorogenic compounds
4
compounds coffee
4
beans exert
4
exert activity
4
activity respiratory
4

Similar Publications

Gut microbiota may modify the association between dietary polyphenol intake and circulating levels of hippuric acid: results from a 1-year longitudinal study in China.

Am J Clin Nutr

January 2025

Department of Nutrition, Center for Big Data and Population Health of IHM, The Second Affiliated Hospital of Anhui Medical University, School of Public Health, Anhui Medical University, Hefei, China. Electronic address:

Background: Hippuric acid (HA), a host-microbe co-metabolite, normally derives from gut microbial catabolism of dietary polyphenols.

Objectives: We investigated the potential interplay between dietary polyphenols and gut microbiota on circulating HA levels, and examined the associations between serum concentrations of HA and cardiometabolic risk markers.

Methods: In a 1-year cohort of 754 community-dwelling adults, serum HA and its precursor [benzoic acid (BA)] and fecal microbiota were assayed using liquid chromatography-tandem mass spectrometry and 16S ribosomal RNA sequencing, respectively.

View Article and Find Full Text PDF

One strategy for adding unique characteristics and flavors to improve coffee quality is the selection of starter microorganisms. Here, we aimed to evaluate the effect of LNFCA11 and B10 as starter cultures on the quality of four different wet-fermented coffee varieties. Microbiological, molecular, and chemical analyses were carried out to identify yeast, bacteria, volatile compounds, carbohydrates and bioactive compounds in coffee.

View Article and Find Full Text PDF

Maize Herbivore-Induced Volatiles Enhance Xenobiotic Detoxification in Larvae of and .

Plants (Basel)

December 2024

Ministry of Education Key Laboratory for Genetics, Breeding and Multiple Utilization of Crop, Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

The release of herbivore-induced plant volatiles (HIPVs) has been recognized to be an important strategy for plant adaptation to herbivore attack. However, whether these induced volatiles are beneficial to insect herbivores, particularly insect larvae, is largely unknown. We used the two important highly polyphagous lepidopteran pests and to evaluate the benefit on xenobiotic detoxification of larval exposure to HIPVs released by the host plant maize ().

View Article and Find Full Text PDF

Ajwa date extract (): Phytochemical analysis, antiviral activity against herpes simplex virus-I and coxsackie B4 virus, and in silico study.

Saudi Med J

January 2025

From the Department of Pharmacognosy and Pharmaceutical Chemistry (Aljohani), College of Pharmacy; from the College of Pharmacy (Maghrabi, Alrehili, Alharbi, Alsihli, Alharthe, Albladi, Alosaimi, Albadrani); from the Department of Pharmacology and Toxicology (Miski, Elbadawy, Alrehaili), College of Pharmacy, Taibah University, Al-Medinah Al-Munawarah, from the Departmet of Chemistry (Hussein), Collage of Science, Jouf University, Aljouf, Kingdom of Saudi Arabia; from the Graduate School of Bioresource and Bioenvironmental Science (Abdelkarem), Kyushu University, Kyushu, Japan; from the Department of Pharmacognosy (Abdelkarem), Faculty of Pharmacy; and from the Department of Chemistry (Hussein), Faculty of Science, Al-Azhar University, Assiut, Egypt.

Objectives: To investigate the phytochemical composition of Ajwa date extract and evaluate its antiviral activity and mechanism of action.

Methods: High perfomance liquid chromatography, gas chromatography-mass spectrometry, and liquid chromatography-mass spectrometry were used to analyze the phytochemical profile of Ajwa date extract. The antiviral activity was assessed using the MTT colorimetric assay against herpes simplex virus type I (HSV-I) and coxsackievirus B4 (CVB-4).

View Article and Find Full Text PDF

Tailored recovery of antioxidant fractions enriched in caffeine and phenolic compounds from coffee pulp using ethanol-modified supercritical carbon dioxide.

Food Res Int

January 2025

Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Department of Production and Characterization of Novel Foods, Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain. Electronic address:

Coffee pulp (CP) is the by-product of coffee processing that urgently needs to be revalorized using sustainable technologies. This work applied a design of experiment (DoE) for modeling the extraction of bioactive compounds from CP using supercritical carbon dioxide (sc-CO) with ethanol as a co-solvent under variable conditions (temperature, pressure, and ethanol percentage). Considering extraction efficiency (per unit of CP) and extraction selectivity (per unit of extract), results showed that ethanol percentage significantly enhanced the efficiency of total phenolic content, as well as the selectivity of chlorogenic acid and protocatechuic acid (p < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!