Developmental mechanisms of stripe patterns in rodents.

Nature

Howard Hughes Medical Institute, Departments of Organismic &Evolutionary Biology and Molecular &Cellular Biology, Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA.

Published: November 2016

Mammalian colour patterns are among the most recognizable characteristics found in nature and can have a profound impact on fitness. However, little is known about the mechanisms underlying the formation and subsequent evolution of these patterns. Here we show that, in the African striped mouse (Rhabdomys pumilio), periodic dorsal stripes result from underlying differences in melanocyte maturation, which give rise to spatial variation in hair colour. We identify the transcription factor ALX3 as a regulator of this process. In embryonic dorsal skin, patterned expression of Alx3 precedes pigment stripes and acts to directly repress Mitf, a master regulator of melanocyte differentiation, thereby giving rise to light-coloured hair. Moreover, Alx3 is upregulated in the light stripes of chipmunks, which have independently evolved a similar dorsal pattern. Our results show a previously undescribed mechanism for modulating spatial variation in hair colour and provide insights into how phenotypic novelty evolves.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5292240PMC
http://dx.doi.org/10.1038/nature20109DOI Listing

Publication Analysis

Top Keywords

spatial variation
8
variation hair
8
hair colour
8
developmental mechanisms
4
mechanisms stripe
4
stripe patterns
4
patterns rodents
4
rodents mammalian
4
mammalian colour
4
colour patterns
4

Similar Publications

Hand, foot and mouth disease (HFMD) is a major public health issue in Hubei Province; however, research on the direct and indirect effects of factors affecting HFMD is limited. This study employed structural equation modeling (SEM) and geographically weighted regression (GWR) to investigate the various impacts and spatial variations in the factors influencing the HFMD epidemic in Hubei Province from 2016 to 2018. The results indicated that (1) with respect to the direct effects, the number of primary school students had the greatest positive direct effect on the number of HFMD cases, with a coefficient of 0.

View Article and Find Full Text PDF

DeST-OT: Alignment of spatiotemporal transcriptomics data.

Cell Syst

January 2025

Department of Computer Science, Princeton University, 35 Olden St., Princeton, NJ 08544, USA. Electronic address:

Spatially resolved transcriptomics (SRT) measures mRNA transcripts at thousands of locations within a tissue slice, revealing spatial variations in gene expression and cell types. SRT has been applied to tissue slices from multiple time points during the development of an organism. We introduce developmental spatiotemporal optimal transport (DeST-OT), a method to align spatiotemporal transcriptomics data using optimal transport (OT).

View Article and Find Full Text PDF

Tracing microplastics in environmental sources and migratory shorebirds along the Central Asian Flyway.

Mar Pollut Bull

January 2025

Department of Biology, United Arab Emirates University, Al Ain 15551, United Arab Emirates; Department of Science, The Natural History Museum, Cromwell Road, South Kensington, London SW75BD, UK.

Microplastic pollution poses a significant threat to coastal ecosystems worldwide. Despite its widespread occurrence, knowledge on the prevalence and fate of microplastics across food webs is limited. To bridge this gap, we conducted an extensive study on microplastic contamination in mudflats, mangroves, and sand beaches being key habitats for wintering shorebirds on the west coast of India.

View Article and Find Full Text PDF

The local environment of the active site, such as the confinement of hydronium ions within zeolite pores, significantly influences catalytic turnover, similar to enzyme functionality. This study explores these effects in the hydrolysis of guaiacols─lignin-derived compounds─over zeolites in water. In addition to the interesting catechol products, this reaction is advantageous for study due to its bimolecular hydrolysis pathway, which involves a single energy barrier and no intermediates, simplifying kinetic studies and result interpretation.

View Article and Find Full Text PDF

Use of analytical strategies to understand spatial chemical variation in bacterial surface communities.

J Bacteriol

January 2025

Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA.

Not only do surface-growing microbes such as biofilms display specific traits compared to planktonic cells, but also they display many heterogeneous behaviors over many spatial and temporal contexts. While the application of molecular genetics tools to extract or visualize gene expression or regulatory function data is now common in studying surface growth, the use of analytical chemistry tools to visualize the spatiotemporal distribution of chemical products synthesized by these surface microbes is less common. Here, we review chemical imaging tools that have been used to inform our understanding of surface-growing microbes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!