CLC anion channels are homodimeric proteins. Each subunit is comprised of 18 α-helices designated "A-R" and an intracellular carboxy-terminus containing two cystathionine-β-synthase (CBS1 and CBS2) domains. Conformational coupling between membrane and intracellular domains via poorly understood mechanisms is required for CLC regulation. The activity of the C. elegans CLC channel CLH-3b is reduced by phosphorylation of a carboxy-terminus "activation domain," which disrupts its interaction with CBS domains. CBS2 interfaces with a short intracellular loop, the H-I loop, connecting membrane helices H and I. Alanine mutation of a conserved H-I loop tyrosine residue, Y232, prevents regulation demonstrating that the loop functions to couple phosphorylation-dependent CBS domain conformational changes to channel membrane domains. To gain further insight into the mechanisms of this coupling, we mutated conserved amino acid residues in membrane helices H and I. Only mutation of the H-helix valine residue V228 to leucine prevented phosphorylation-dependent channel regulation. Structural and functional studies of other CLC proteins suggest that V228 may interact with Y529, a conserved R-helix tyrosine residue that forms part of the CLC ion conduction pathway. Mutation of Y529 to alanine also prevented CLH-3b regulation. Intracellular application of the sulfhydryl reactive reagent MTSET using CLH-3b channels engineered with single-cysteine residues in CBS2 indicate that V228L, Y529A, and Y232A disrupt putative regulatory intracellular conformational changes. Extracellular Zn inhibits CLH-3b and alters the effects of intracellular MTSET on channel activity. The effects of Zn are disrupted by V228L, Y529A, and Y232A. Collectively, our findings indicate that there is conformational coupling between CBS domains and the H and R membrane helices mediated by the H-I loop. We propose a simple model by which conformational changes in H and R helices mediate CLH-3b regulation by activation domain phosphorylation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5103031PMC
http://dx.doi.org/10.1016/j.bpj.2016.09.037DOI Listing

Publication Analysis

Top Keywords

conformational coupling
12
h-i loop
12
membrane helices
12
conformational changes
12
clc anion
8
channel membrane
8
cbs domains
8
tyrosine residue
8
clh-3b regulation
8
v228l y529a
8

Similar Publications

Phased structures for lossless ion manipulation offer significant improvements over the scanning second gate method for coupling with ion trap mass analyzers. With an experimental run time of under 1 min for select conditions and an average run time of less than 4 min, this approach significantly reduces experimental time while enhancing the temporal duty cycle. The outlined SLIM system connects to an ion trap mass analyzer via a PCB stacked ring ion guide, which replaces the commercial ion optics and capillary inlet.

View Article and Find Full Text PDF

Molecular basis of proton sensing by G protein-coupled receptors.

Cell

December 2024

Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94148, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94115, USA. Electronic address:

Three proton-sensing G protein-coupled receptors (GPCRs)-GPR4, GPR65, and GPR68-respond to extracellular pH to regulate diverse physiology. How protons activate these receptors is poorly understood. We determined cryogenic-electron microscopy (cryo-EM) structures of each receptor to understand the spatial arrangement of proton-sensing residues.

View Article and Find Full Text PDF

Herein, we report the precise control of molecular to supramolecular chirality induction at the single-molecule level just upon subtle modification in an achiral 'nano-size' trizinc(II) porphyrin trimer. A slight variation in the projection of the substituent at the periphery of the central porphyrin unit in a porphyrin trimer (host) resulted in pronounced changes in the interchromophoric arrangement, leading to distinct 'open' and 'closed' conformations. While 'open' form generates 'monomeric' complex with low CD amplitude, 'closed' form produces exclusive 'polymer' with large, amplified CD signal with opposite sign due to stronger intermolecular excitonic coupling.

View Article and Find Full Text PDF

Structural characterization of two γδ TCR/CD3 complexes.

Nat Commun

January 2025

Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA.

The T-cell receptor (TCR)/CD3 complex plays an essential role in the immune response and is a key player in cancer immunotherapies. There are two classes of TCR/CD3 complexes, defined by their TCR chain usage (αβ or γδ). Recently reported structures have revealed the organization of the αβ TCR/CD3 complex, but similar studies regarding the γδ TCR/CD3 complex have lagged behind.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) are the largest human membrane protein family that transduce extracellular signals into cellular responses. They are major pharmacological targets, with approximately 26% of marketed drugs targeting GPCRs, primarily at their orthosteric binding site. Despite their prominence, predicting the pharmacological effects of novel GPCR-targeting drugs remains challenging due to the complex functional dynamics of these receptors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!